Geometrical Modeling of Concrete Microstructure
for the Assessment of ITZ Percolation

Daniel Rypl

Department of Mechanics
Faculty of Civil Engineering
Czech Technical University in Prague
Thákurova 7, 166 29 Prague, Czech Republic

Tomáš Bým

Golder Associates AB,
Ostgotagatan 12, 116 25 Stockholm, Sweden




Abstract:

Percolation is considered to be a critical factor affecting the transport properties of multiphase materials. In the case of concrete, the transport properties are strongly dependent on the interfacial transition zone (ITZ), which is a thin layer of cement paste next to aggregate particles. It is not computationally simple to assess ITZ percolation in concrete, as the geometry and topology of this phase is complex. While there are many advanced models that analyze the behavior of concrete, they are mostly based on the use of spherical or ellipsoidal shapes for the geometry of the aggregate inclusions. These simplified shapes may become unsatisfactory in many simulations, including the assessment of ITZ percolation. This paper deals with geometrical modeling of the concrete microstructure using realistic shapes of aggregate particles, the geometry of which is represented in terms of spherical harmonic expansion. The percolation is assessed using the hard core â soft shell model, in which each randomly-placed aggregate particle is surrounded by a shell of constant thickness representing ITZ.Percolation is considered to be a critical factor affecting the transport properties of multiphase materials. In the case of concrete, the transport properties are strongly dependent on the interfacial transition zone (ITZ), which is a thin layer of cement paste next to aggregate particles. It is not computationally simple to assess ITZ percolation in concrete, as the geometry and topology of this phase is complex. While there are many advanced models that analyze the behavior of concrete, they are mostly based on the use of spherical or ellipsoidal shapes for the geometry of the aggregate inclusions. These simplified shapes may become unsatisfactory in many simulations, including the assessment of ITZ percolation. This paper deals with geometrical modeling of the concrete microstructure using realistic shapes of aggregate particles, the geometry of which is represented in terms of spherical harmonic expansion. The percolation is assessed using the hard core â soft shell model, in which each randomly-placed aggregate particle is surrounded by a shell of constant thickness representing ITZ.