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Abstract

The present contribution reports on a mixed numerical experimental study of the
time dependent processes in saturated soils with reference to isotropic consolidation.
Owing to its relative simplicity, the isotropic consolidation is often viewed as a ba-
sic tool for inferring the material parameters of various constitutive models. Within
this modeling framework, the paper advocates the use of the CAM clay model for an
accurate description of the time dependent deformation of clayey soils. Apart from
the classical formulation based on the normal consolidation line (NCL), the present
approach admits two principal modifications. First, both numerical simulations
and experimental observations suggest time dependent variation of the permeability
coefficient. When expressed as a function of the actual void ratio it can signifi-
cantly improve the material response particularly when the degree of consolidation
increases. To further improve an initial rate of consolidation it appears inevitable to
incorporate a time change of the influence zones inside the sample. In the present
formulation this is accomplished through a bilinear form of the consolidation line
(BCL). Several numerical and experimental results are presented to support the
theoretical grounds.

Keywords: Cam Clay, coefficient of permeability, consolidation, BCL, void ratio,
structural strength.

1 Introduction

Reliable and accurate prediction of the mechanical response of any material in-
cluding soils depends equally on both the selected constitutive model and material
parameters of a given soil entering the model. While the respective constitutive
model is usually well defined and tested for the description of a certain type of soils,
the values of associated material parameters are mostly lacking that leads to ex-
tensive laboratory program for their determination. In certain occasions, however,



this problem can be confined to a single laboratory test combined with numerical
simulations. In particular, the present contribution advocates the use of a simple
isotropic consolidation test to infer the basic material parameters describing the
modified Cam Clay model.

The modified Cam Clay model has been often a choice of the constitutive model
for a realistic representation of the inelastic behavior of clayey soils particularly
when deformation of the solid phase is of the main concern. In our previous work,
[8, 9], we pointed out several drawbacks of this model when applied to consolida-
tion. We recall, in passing, the need for at least bilinear form of the consolidation
line (BCL) to account for prior loading history (unloading from a certain level of
preconsolidation pressure prior to subsequent loading). The second history requires
deformation dependent formulation of the coefficient of permeability, see also [4, 11]
and Section 4 for further discussion. Such modifications then give rise to five basic
material parameters to feed the constitutive model. These parameters are sum-
marized in Section 2, which briefly reviews the theoretical formulation of isotropic
consolidation.

The choice of isotropic consolidation test as a tool for extracting the material pa-
rameters of the Cam Clay model is primarily attributed to its relative simplicity and
the possibility of the experimental procedure to be exactly reproduced by numerical
simulation. Following up the laboratory measurements performed in the triaxial
apparatus, the numerical simulation reduces to one-dimensional consolidation prob-
lem under fully saturated conditions. Several numerical techniques applicable for
the solution of such a problem are discussed in Section 3. Efficiency, accuracy and
ease of implementation are the main promoters for their implementation as a part
of the optimization problem discussed in Section 5. This section outlines a reliable
optimization procedure based on genetic algorithms, [13, 10, 12], to provide optimal
values of the desired material parameters by matching experimental measurements
with the results derived numerically.

2 Governing equations

Referring to experimental measurements carried out in the triaxial apparatus
[6], the isotropic consolidation can be viewed as one phase flow in fully saturated
deforming medium undergoing small deformation. Geometrical arrangement and
loading conditions (cylindrical sample subjected to hydrostatic pressure) allow to
write the Cauchy equations of equilibrium in the form

∂σx(x, y, z, t)

∂x
= 0,

∂σy(x, y, z, t)

∂y
= 0, (1)

∂σz(x, y, z, t)

∂z
= 0.

The hydrostatic state of stress maintained during the experimental measurement
together with Eq. (1) give

σx(x, y, z, t) = σy(x, y, z, t) = σz(x, y, z, t) =
σm(t)

3
, (2)
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Figure 1: Bilinear form of the consolidation line

where σm is the total mean stress. Following the Terzaghi–Fillunger concept of
effective stresses this quantity can be expressed in terms of the pore pressure ps and
the effective stresses between grains σeffm as

σm = σeffm − ps. (3)

Assuming full saturation (Sw = 1, [7]) the pore pressure ps equals the pressure in the
liquid phase pw. Referring to experimental conditions the total mean stress remains
constant throughout the consolidation process. Eqs. (1)–(3) then provide

σ̇m = σ̇effm − ṗw = 0, (4)

where ˙( ) represents the time derivative ∂( )/∂t.
Transport of the liquid phase throughout the soil sample can be described by

the following set of equations:
Transport equation

Jw = −Kρ
w

γw
grad pw, (5)

where Jw is the mass flux of pore water, γw = gρw is the specific weight of water,
ρw is the intrinsic mass density and K represents an instantaneous coefficient of
permeability.

Balance equation reads
ρw ε̇v + div Jw = 0. (6)

The volumetric strain εv follows from the
Constitutive equation

εv =
e− e0

1 + e0

= − κ

1 + e0

ln
(
−σeffm

)
, σeffm > σeffm ,

εv =
e− e0

1 + e0

= − λ

1 + e0

ln
(
−σeffm

)
, σeffm < σeffm , (7)
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derived in case of the Modified Cam Clay model from the bilinear consolidation line,
Fig. 1. The initial branch, often referred to as κ –line, gives evidence of the previous
stress history and represents the effect of overconsolidation. The slope discontinuity
between the κ and λ – lines can be identified with the structural strength of soil
given in terms of a certain level of the effective mean stress σeffm . The bilinear line
displayed in Fig. 1 is usually replaced by a transition along a smooth curve that
is characteristic for a given soil under consideration, see the dashed line in Fig. 1.
Introducing an instantaneous modulus λ̂ renders the constitutive equation (7) at an
instant time t

εv(t) =
e(t)− ê0(t)

1 + ê0(t)
= − λ̂(t)

1 + ê0(t)
ln
(
−σeffm (t)

)
. (8)

Differentiating Eqs. (8) with respect to time gives the rate of volumetric strain
in the form

ε̇v(t) =
ė(t)

1 + ê0(t)
= − λ̂(t)

1 + ê0(t)

ṗw(t)

σeffm (t)
. (9)

Substituting Eqs. (5) and (9) into Eq. (6) and taking into account the actual triaxial
set-up, in which only the bottom face of the cylinder is drained, lead to

− 1 + ê0(t)

γwλ̂(t)
σeffm (t)

∂

∂z

(
K(t)

∂pw(t)

∂z

)
− ṗw(t) = 0. (10)

It has been verified experimentally that in case of isotropic consolidation a mere
power law written as [9]

K

K0

=
(
e

e0

)m
, (11)

represents the soil behavior fairly well. The dependence of the actual void ratio e
on the effective mean stress, Eq. (8), together with Eq. (11) provide

∂K(t)

∂z
= −mK(t)λ̂(t)

e(t)σeffm (t)

∂pw(t)

∂z
. (12)

Introducing Eq. (12) into Eq. (10) finally yields

ṗw(t) = −K(t)(1 + ê0(t))

γwλ̂(t)

−mλ̂(t)

e(t)

(
∂pw(t)

∂z

)2

+ σeffm (t)
∂2pw(t)

∂z2

 . (13)

3 Numerical implementation

The purpose of this section is to evaluate several numerical methods commonly
used when solving the consolidation problem. In view of the solution of inverse
problem outlined in Section 5, the main objective remains computational efficiency of
individual numerical techniques. First, we recall the collocation method successfully
implemented in [8, 9]. The implicit finite control volume scheme combined with the
finite difference method is explored next. Finally, our attention is given to the finite
element method, which proved to be an efficient tool particularly when taking the
volume changes of the porous skeleton into account [2].
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3.1 Numerical solution using the collocation method

A suitable method for solving Eq. (13) combines the collocation method along with
a cubic spline approximation of the pore pressure distribution. After discretization
Eq. (13) becomes

ṗwi (tj+1) = −K(tj)(1 + ê0(tj))

γwλ̂(tj)

[
−mλ̂(tj)

e(tj)
(Yi(tj))

2 + σeffm,i (tj)Mi(tj+1)

]
. (14)

Note that by using the above approximation we force Eq. (13) to be fulfilled only at
a certain points of collocation (i); Yi(tj) and Mi(tj+1) then represent the first and
second derivatives of the unknown pore pressure at the ith point, respectively. Also
point out that the pore pressure dependent material parameters K, λ̂, ê0 and e are
taken at time t = tj to avoid solution of the nonlinear system of equations. The
same simplification applies to variables Yi and (σeffm )i. Accepting such assumptions
allows to write the above equation in the form

ṗwi (tj+1) + α(tj)Mi(tj+1) = β(tj), (15)

where

αi(tj) =
K(tj)(1 + ê0(tj))

γwλ̂(tj)
σeffm,i (tj)

βi(tj) =
K(tj)(1 + ê0(tj))

γwλ̂(tj)

mλ̂(tj)

e(tj)
(Yi(tj))

2,

σeffm,i (tj+1) = σeffm,i (tj+1) + pwi (tj+1)− pwi (tj).

To solve Eq. (15) we further assume the generalized trapezoidal rule [5] and write

ṗwi (tj+1) =
1

τ∆t
(pwi (tj+1)− p̃wi (tj+1)) , (16)

p̃wi (tj+1) = pwi (tj) + (1− τ)∆tṗwi (tj), (17)

where τ = (t − tj)/∆t; ∆t = tj+1 − tj is the time step. Parameter τ should be
chosen from τ ∈ (1/2, 1) to ensure numerical stability. The most common choice is
τ = 1/2. When substituting Eqs. (16) and (17) into Eq. (15) we arrive at

pwi (tj+1) = −τ∆tαi(tj)Mi(tj+1) + τ∆tβi(tj) + p̃wi (tj+1). (18)

Further suppose an equidistant spread of the collocation points with step ∆h =
zi − zi−1. The cubic spline equation then reads

1

2
Mi−1 + 2Mi +

1

2
Mi =

3

∆h2
(pi−1 − 2pi + pi+1). (19)

Combining the Eqs. (19) and (18) then readily provides the final tridiagonal system
of algebraic equations in the form[

1

2
+ 3τ∆tαi−1(tj)

1

∆h2

]
Mi−1(tj+1)

+
[
2− 6τ∆tαi(tj)

1

∆h2

]
Mi(tj+1) (20)

+
[
1

2
+ 3τ∆tαi+1(tj)

1

∆h2

]
Mi+1(tj+1)

=
3

∆h2
[Pi−1(tj)− 2Pi(tj) + Pi+1(tj)] ,
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Figure 2: A three layer model

where

Pi(tj) = τ∆tβi(tj) + p̃wi (tj+1), (21)

Yi(tj) =
1

∆h
(pwi (tj)− pwi−1(tj)) +

∆h

6
(2Mi(tj) +Mi−1(tj)). (22)

To complete the numerical procedure the following boundary and initial conditions
are supplemented in accord with the experimental set up

p1(tj) = 0, pn(tj) = 0, (23)

pi(0) = −σm + σeffm,i (0) i = 2, . . . , n− 1,

where n is the number of collocation points. The selected cubic spline boundary
conditions assume the form

M1(tj) = Mn(tj) = 0. (24)

3.2 Numerical solution using the finite volume method

It is evident that direct solution of Eq. (13) leads, in general, to a nonlinear system
of equations. Therefore it appears preferable to start by discretizing the governing
equations, which are then successively used in single time step. In view of one-
dimensional problem, Eq. (10), the set of governing equations will be discretized
using a three-layer model. Individual layers (finite control volumes) have different
thickness and diverse materials can be assigned to each layer. The pore pressure is
assumed to be constant inside each control volume and within each time step, and
to be equal to the pore pressure at the so called grid-point, Fig. 2. Its position is
prescribed by a chosen parameter fi.
Transfer equation

Application of the finite difference scheme converts Eq. (5) for the water flux
throughout a layer i with thickness ∆zi into the form

Jwi = − Ki

g∆zi
(pwi − pwi−1) = −(hzi)(p

w
i − pwi−1), (25)

where
1

hzi
= (1− fi−1)

g∆zi−1

Ki−1

+ fi
g∆zi
Ki

, (26)

is the overall resistance between grid points (i− 1) and i.
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Balance equation
Employing the generalized trapezoidal method provides the time variation and

the rate of volumetric strain in the form, recall Eqs. (16) and (17),

ε̇v,i(tj+1) =
1

τ∆t
(εv,i(tj+1)− ε̃v,i(tj+1)) , (27)

ε̃v,i(tj+1) = εv,i(tj) + (1− τ)∆tε̇v,i(tj). (28)

Next, applying again the finite difference scheme yields an incremental form of the
balance equation (6) for layer i

∆ziρ
w

τ∆t
(εv,i(tj+1)− ε̃v,i(tj+1)) + Jwi+1(tj+1)− Jwi (tj+1) = 0. (29)

State equation
Introducing Eqs. (16) and (27) into Eq. (9) gives

εv,i(tj+1)− ε̃v,i(tj+1) = − λ̂(tj)

1 + ê0(tj)

1

σeffm,i (tj)
(pwi (tj+1)− p̃wi (tj+1)) . (30)

After combining Eqs. (30), (29) and (25) we arrive at a set of tridiagonal algebraic
equations in the form

(hzi+1)pwi+1(tj+1)−

(hzi+1) + (hzi) −
∆ziρ

w

τ∆t

λ̂(tj)

1 + ê0(tj)

1

σeffm,i (tj)

 pwi (tj+1)

+ (hzi)p
w
i−1(tj+1) =

∆ziρ
w

τ∆t

λ̂(tj)

1 + ê0(tj)

1

σeffm,i (tj)
p̃wi (tj+1). (31)

At the onset of consolidation the initial condition, similar to Eq. (23), reads

pi(0) = −σm + σeffm,i (0) i = 1, . . . , n, (32)

where n is the number of finite control volumes.

3.3 Numerical solution using the finite element method

In view of the general solution of fluid-solid interaction we recall the finite element
method (FEM) often used to solve differential equations similar to Eq. (10). Apart
from Eq. (10), which must be satisfied at any point inside the soil body, the boundary
value problem requires formulation of the boundary conditions. To that end, the
boundary is decomposed into two parts, Γ = Γp + Γq, with the following boundary
conditions:
Essential boundary condition

pw = pw, on Γp, (33)

Natural boundary condition

1 + ê0

λ̂

σeffm

γw
K
∂p

∂z
+ q = 0, on Γq. (34)
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Figure 3: Boundary conditions

Fig. 3 shows the boundary conditions pertinent to the isotropic consolidation.
To derive a set of finite element equations we start by introducing the balance

equation (10) and its natural boundary condition (34) into the principle of virtual
work written as ∫ H

0

[
−1 + ê0

γwλ̂
σeffm

∂

∂z

(
K
∂pw

∂z

)
− ṗw

]
δpw dz

+

[
1 + ê0

λ̂

σeffm

γw
K
∂p

∂z
+ q

]
z=H

2

δpw(H) = 0. (35)

Integrating the first term in Eq. (35) by parts yields∫ H

0

∂δpw

∂z

1 + ê0

γwλ̂
Kσeffm

∂pw

∂z
dz −

∫ H

0
δpwṗwdz + qδpw(H) = 0. (36)

The next step employs the usual approximation of the water pore pressure in the
form

pw = Npdp, (37)

where Np stores the element shape functions and dp is the vector of nodal pore water
pressures. After substituting the above approximation into Eq. (36) we identify the
following matrices, [7],
permeability matrix

P =
∫ H

0

1 + ê0

γwλ̂
Kσeffm (N

′

p)
TN

′

p dz, N
′

k,p =
∂Nk,p

∂z
, (38)

compressibility matrix

C = −
∫ H

0
NT
p Np dz. (39)

Note that the last term in Eq. (36) drops out due to prescribed boundary conditions.
Since Eq. (36) must be satisfied for any admissible virtual pore pressure δpw we arrive
at the following system of equations

Cḋp(tj+1) + P(tj)dp(tj+1) = 0. (40)
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We usually require the material parameters, including the coefficient of perme-
ability, be constant within a given element. Eqs. (7) and (11) suggest the volumetric
strain to be constant as well. When assuming a linear approximation of the pore
pressure, the vector of nodal pore pressure values of the ith element becomes

(di,p)
T = {dp1, dp2}i. (41)

The constant effective mean stress σeffi,m in the ith element is then given by

σeffi,m = σm −
(dp1 + dp2)i

2
. (42)

For the sake of consistency, the volumetric strain εv and the water pore pressure pw

should be of the same order (recall Eq. (9). Herein, the desirable consistency of the
solution is achieved by applying the so-called selective integration to integrate the
compressibility matrix (one-point Gauss’ quadrature).

Once the discretization in space has been performed, Eq. (40) represents a set
of ordinary differential equations in time, which can be integrated numerically, [2].
To proceed, consider again the generalized trapezoidal rule such that

ḋp(tj+1) =
1

τ∆t

(
dp(tj+1)− d̃p(tj+1)

)
, (43)

d̃p(tj+1) = dp(tj) + (1− τ)∆tḋp(tj). (44)

Substitution of Eq. (43) into Eq. (40) finally leads to a system of linear algebraic
equations given by

1

τ∆t
(C + τ∆tP(tj))dp(tj+1) =

1

τ∆t
Cd̃p(tj+1). (45)

The initial condition prescribing the water pore pressure at the beginning of
loading, t = 0 takes the form

di,p = di,p(0) = −σm + σeffi,m (0) i = 1, . . . , n, (46)

where n is the number of elements.

4 Numerical results

Before proceeding with the results found using the presented formulation we draw
the readers attention to Fig. 4 manifesting several drawbacks associated with the
solution of the consolidation problem when applied to the standard Cam Clay model.
The solid line shows results derived experimentally. The dash-dotted line follows
from numerical calculations assuming the liner NCL (virgin soil) and the deformation
dependent coefficient of permeability, while the dashed line was found from the BCL
but keeping the coefficient of permeability constant. Clearly, neither the deformation
dependent variation of the coefficient of permeability nor the bilinear form of the
consolidation line can itself describe the true consolidation process and therefore
both of them should be taken into consideration when simulating transport of water
in soft soils. The material parameters entering Eq. (13) are listed in Table 1.
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Figure 4: Time variation of pore pressure

Table 1: Material parameters

κ [kPa] λ [kPa] e0 K0 σeffm [kPa] m
0.01 0.1 0.5 5e-9 -40 6

In a nutshell, the first assumption essentially labels soils as being normally con-
solidated, which further contributes to a rather slow initial phase of the process of
consolidation, Fig. 4 (dash-dotted line). In natural state, however, soils are usually
in overconsolidated states due to unloading from the original stress state (e.g., water
table fluctuation). To account for a prior loading history we introduce the influence
zone variation as a function of a certain level of the effective mean stress, usually
referred to as the structural strength. This level of the effective mean stress can be
identified with the preconsolidation pressure. In the present formulation, the struc-
tural strength is introduced trough a bilinear shape of the consolidation line [9], [1].
An effect of this modification becomes evident when examining Eq. (13). In partic-
ular, a lower value of λ̂ at the initial stage increases the coefficient of permeability
leading to an acceleration of the consolidation process at this stage, a phenomenon
observed in experiments.

The second shortcoming comes from the originally assumed constant value of the
coefficient of permeability, responsible for an abrupt increase in rate of consolida-
tion as the effective mean stress developed during consolidation becomes appreciable,
Fig. 4 (dashed line). However, this stage of consolidation is associated with a signif-
icant deformation of the skeleton leading to the decrease of the volume of pores and
subsequently to the decrease of the coefficient of permeability. Based on our exten-
sive numerical investigations of the isotropic consolidation [8], [9] we proposed an
exponential relation between the coefficient of permeability and the actual void ratio
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represented by Eq. (11). Note that this relationship was suggested by the authors
based solely on numerical results. Nevertheless, it conforms with an experimental
observation, [11] pp. 138, fairly well.

The remaining part of this section provides qualitative description of individual
modifications. First, an influence of the BCL, Fig. 1, is investigated. The location
of the slope discontinuity on the BCL corresponds to a given value of the structural
strength of soil. This value can be estimated using, e.g., the Casagrande method [3].
To avoid numerical difficulties around this point we equipped the diagram with a
cubic parabola to smooth out the transition zone. Results for various values of the
structural strength σeffm are plotted in Fig. 5 assuming m equal to 6. It is evident
that increasing the magnitude of σeffm speeds up the rate of consolidation in the first
stage quite substantially.

The second modification aims at slowing down the consolidation process in the
second stage of consolidation associated with decreasing volume of pores due to
skeleton deformation. This phenomenon is taken into account by incorporating
Eq. (11) into numerical procedure. Results for various values of exponent m and for
a given structural strength σeffs = −30 kPa are presented in Fig. 6. The dash-dotted
line shows rather gradual decrease of the pore pressure profile with increasing time
which is in better agreement with experimental observations.

Fig. 7 then summarizes the present theory. First, recall that the dotted line was
obtained without taking into account the first modification. In such a case a rather
high value of m locks up the numerical procedure at the beginning of consolidation.
The dashed line then reflects suggested modifications. At the present time a simple
trial and error procedure was employed to derive optimal values of m and σeffm .
However, a simple least square based optimization procedure can be inferred to
obtain better match between experiment and numerical simulation. This problem
is addressed in Section 5.
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5 Formulation of the optimization problem

As intimated in the introductory section, the one-dimensional isotropic consolida-
tion can be used very efficiently to extract basic material parameters of the modified
Cam Clay model from a single laboratory test. Matching experimentally obtained
data with those derived numerically it might be the simplest view at a complex
optimization procedure discussed herein.

Recall Eq. (13) describing the excess pore pressure variation during consolida-
tion. Reproducing laboratory data thus requires to supply the following material
parameters: the initial void ratio e0, the swelling index κ, the compression index λ,
the structural strength parameter σeffm and the parameter m in Eq. (11). In view of
the optimization problem these parameters now become the search variables to be
found by minimizing the following function

F =
K∑
k=1

(pw(tk)− pw(tk))
2 , (47)

where pw(tk) is an experimentally obtained value of the pore pressure at a certain
time instant tk and K is the number of supplied measurements taken at times tk, k =
1, 2, . . . , K. To facilitate the step-by-step solution of Eq. (13), we first set time
integration steps as differences between matching times tk (i.e. (∆t)k = tk − tk−1).
Pore pressure values pw(tk) then follow from Eq. (13).

5.1 Genetic-algorithm based optimization procedure

As suggested by the authors the minimization of Eq. (47) can be tackled very
efficiently with the help of problem solving systems based on principles of evolution
such as genetic algorithms (GAs) or augmented simulated annealing methods [13, 10,
among others]. Detailed exposition to a number of genetic algorithms adopted for
solving various engineering problems is given in [12].

Based on our experience with genetic algorithms we implemented here a very
efficient and reliable optimization technique called the augmented (or parallel) sim-
ulated annealing (AUSA) [10]. This method effectively combines the essentials of
GAs (a population of possible solutions P termed chromosomes, rather then a single
point in space, is optimized) together with the basic concept of simulated annealing
method guiding the search towards minimal energy states. The GA-phase closely
follows the basic steps of a single GA cycle: reproduction, recombination, and selec-
tion of a new population. From this viewpoint we may relate the AUSA to a group
of Steady state and On the fly methods [13], in which offspring replace its parents
immediately. The following algorithm describes an implementation of the AUSA:

1 T = Tmax, t = 0
2 generate P0, evaluate P0

3 while (not termination-condition) {
4 counter = success = 0
5 while( counter < countermax ∧ success < successmax) {
6 counter = counter + 1, t = t+ 1
7 select operator O

13



8 select individual(s) It from Pt
9 modify It by O to get new offspring(s) I ′t

10 p = exp ((F (I ′t)− F (It))/T )
11 if (random number u[0, 1] ≤ p) {
12 success = success+ 1
13 insert I ′t into Pt
14 evaluate Pt
15 }
16 }
17 decrease T
18 }

Algorithm 1: Augmented Simulated Annealing

To draw the reader closer to genetic algorithms we now describe the essential fea-
tures of the above algorithm in conjunction with the present minimization problem.
In general, function F in Eq. (47) is a function of 5 variables

F (X) = F
(
e0, κ, λ, σ

eff
m ,m

)
. (48)

To keep up with the genetic algorithm vocabulary we shall call the vector X
a chromosome and individual components genes. Step 2 in Algorithm 1 requires
to generate a family of possible solutions called population. To that end, we first
estimate a possible solution using either a simple trial and error method (Section 4)
or data available for a similar type of soil. Next, setting the upper and lower bounds
on individual search variables, we generate individual chromosomes in the initial
population purely randomly.

As in nature, where species compete for their survival, the selection of chromo-
somes for their reproduction, step 8, depends on their current fitness. The fitter
ones have better chance to be selected. In the present minimization problem the
fitness is simply equal to inverse of the function value

si =
1

δ + Fj
, Fj ≥ 0,

where Fj is the function value associated with the jth individual. Parameter δ is
a small positive number. Note that sj = Fj when solving maximization problem.
Various selection methods are available in [12].

Step 9 requires application of certain genetic operators. Recall that breeding
is the essential force driving evolution of each species. Mating process, in which
two parents combine their good characteristics to produce a better offspring, is
accomplished in genetic algorithms through various “cross-breeding” and “mutat-
ing” operators. Due to nature of vector X we choose float point representation of
searched variables thus no mapping between search and representation space is re-
quired. Detailed exposition to genetic operators built for float point representation
is given in [13, 12]. Here, we limited our attention to nonuniform mutation and
simple arithmetic crossover defined in the sequel.

Let Li and Ui represent the lower and upper bound for each variable xi, re-
spectively. Further assume that vector X represents a parent, whereas vector X ′
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corresponds to an offspring; u(a, b) is a real number and u[a, b] is an integer number
with uniform distribution defined on a closed interval 〈a; b〉. The following operators
can be now defined:

Non-uniform mutation: Let j = u[1, 2N ], p = u(0, 1) and set:

x′i =


xi + (Li − xi)f(t), if i = j, p < .5
xi + (Ui − xi)f(t), if i = j, p ≥ .5

xi, otherwise

where f(t) = u(0, 1)(1 − t/tmax)
b, t is the current generation, tmax is the

maximum number of generations and b is the shape parameter. This operator
allows for a local tuning as it searches the space uniformly initially and very
locally at later stages.

Simple arithmetic crossover: Let j = u[1, 2N ], p = u(0, 1) and set:

x′i =

{
pxi + (1− p)yi, if i = j

xi, otherwise

y′i =

{
pyi + (1− p)xi, if i = j

yi, otherwise

In the present formulation the reproduction step proceeds in two steps. First, we
select parents (chromosomes) to breed according to their fitness. Genetic operators,
however, are not applied to the entire chromosome but rather to individual genes. It
is recommended to choose mutation operators with much higher probabilities then
crossovers. In [10] ratio ≈ 0.1 is proposed.

The replacement procedure (steps 10 through 15) is controlled by the Metropolis
criterion, which allows a worse child to replace its better parent with only a certain
probability. The probability of excepting a worse solution is reduced as the procedure
converges to the “global” minimum. To that end a certain cooling schedule must be
created. We use a very simple form of cooling schedule Ti+1 = TmultTi. In this step
we also perform reannealing if necessary. If the actual temperature is lower then a
given parameter Tmin, we set T = Tmax and copy a half of the current population
to a new one. Remaining part of a new population is generated randomly. The
temperature Tmax should be chosen such that the ratio of accepted solutions to all
solutions is ≈ 50%.

Clearly, evaluation of the objective function calls for a fast numerical procedure
to solve Eq. (13) as the number of function evaluation may exceed several hundreds.
It has been confirmed that any of the three techniques outlined in Section 3 is equally
efficient and therefore no preference is given to any of them. It is further expected
that rather accurate estimate of the initial solution may substantially speed up the
optimization process.

5.2 Numerical results

Numerical simulations obtained using the material parameters found from the
optimization process are plotted in Fig. 8. The corresponding material properties are
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Figure 8: Time variation of pore pressure

Table 2: Optimal material parameters

κ [kPa] λ [kPa] e0 K0 σeffm [kPa] m
0.012 0.074 0.56 1.53e-9 -28.45 4.7

stored in Table 2. To derive the dash-dotted line we started from material properties
provided by Table 1 as our initial guess. Minimizing Eq. (47) then let to the desired
material properties describing the true behavior of the selected soil. Perfect match
between experimental and numerical data is evident (see the solid and dash-dotted
lines in Fig. 8). To confirm the theoretical formulation we rerun the laboratory
test on the previously consolidated soil. Note the level of preconsolidation pressure
equal to about -200 kPa resulting from the initial experimental measurements as
well as associated numerical calculations. This value was taken as a measure of
the structural strength for the numerical simulation in the second run. In addition,
the initial coefficient of permeability was set equal to 0.43 (K0=4.5e-9). This value
was found upon unloading at the end of the initial consolidation run using the
optimal κ modulus (see also Fig. 1). The remaining material data were taken from
Table 2. The results appear in Fig. 8. The dashed line corresponds to experimental
measurements, whereas the dotted line was constructed numerically. Agreement
between laboratory and numerical experiments is remarkable. It is worthwhile to
mention a noticeable speedup in the course of consolidation attributed to an increase
of the structural strength after terminating the initial consolidation process. This
final result further supports the validity of the proposed theoretical formulation.
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6 Conclusions

The present paper was concerned with an effect of structural strength in the
computational model of isotropic consolidation in which the skeleton deformation is
governed by the modified Cam Clay model. Several numerical techniques to solve
the isotropic consolidation problem were explored. Both the numerical results and
experimental data proved necessity of incorporating the structural strength of soils
into the computational model. Experimental measurements verified that soils with
a higher magnitude of the structural strength are characterized by a shorter time of
consolidation which could not be accounted for by the standard modified Cam Clay
model (virgin line of isotropic consolidation). In addition a number of numerical
as well experimental results verified the proposed modification of the coefficient of
permeability. An independent experimental observation confirmed an exponential
form of the relationship between the coefficient of permeability and current void
ratio proposed by the authors. Comparison of numerical results with experiments
suggest that both modifications are important and are not mutually interchangeable.
It was further suggested that isotropic consolidation formulated as an optimization
problem can serve as an efficient tool to extract the material parameters describing
the modified Cam Clay model. To that end, a reliable optimization technique based
on the AUSA was proposed.
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