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Abstract 
 
 Effective thermoelastic material properties are found for random fibrous composite 
systems. In particular, the graphite fiber tow embedded in the polymer matrix is selected 
as a representative of the two-phase disordered composite media. Two approaches to the 
evaluation of effective properties are described. The first one utilizes the extended form 
of the Hashin-Shtrikman variational principle, which directly incorporates certain 
microstructure describing functions to generate bounds on effective thermoelastic 
properties. The second approach relies on construction of a periodic unit cell, which 
statistically resembles the real microstructure. Standard homogenization procedure 
based on the stress control is then invoked to generate a system of governing equations 
for estimation of the overall thermoelastic properties of the composite. Several 
numerical results are presented for the selected material system. 
 

1 Introduction 
 
The purpose of this paper is to introduce two different approaches to the evaluation of 
thermoelastic response of composite materials with random microstructure. 
 Typically, evaluation of local fields in such a medium is limited to application of 
various approximate techniques such as the self-consistent or Mori-Tanaka methods [4]. 
 However, when a certain knowledge of the real microstructure is available, the 
estimates of local fields can be improved by treating random composites. To that end, 
the random character of a real microstructure can be incorporated through various 
statistical descriptors directly into variational principles, which readily provide bounds 
on overall elastic properties of heterogeneous media. Usually, the two-point [3] or even 
three-point [7] probability functions are used to describe microstructure morphology. 
However, since three-point functions are quite difficult to obtain for real 
microstructures, the description by two-point probability functions is preferable. 
 Another treatment is available when considering periodic microstructures. In such a 
case, the real microstructure, see Fig. 1, is replaced by a material representative volume 
element given in terms of a periodic unit cell, which statistically resembles the actual 
composite. The elements of this approach have been outlined in our previous work [12] 
when estimating overall mechanical properties of a graphite fiber tow impregnated by 
the polymer matrix. 
 Section 2 briefly reviews the basic aspects associated with quantification of 
microstructure morphology. Section 3 introduces the extended form of the well-known 
Hashin-Shtrikman variational principle and discusses its application for obtaining 
bounds on the overall thermomechanical properties of the material system under 
consideration. Section 4 describes the construction of a periodic unit cell and the 
essence of the numerical method for evaluation of local and overall fields in the periodic 
media. For the sake of completeness various connections between the local and overall 
thermal strains are revisited.  Example problems are presented in Section 5. 
 Hereafter, we adopt notation introduced by Beran [1] and denote an ensemble 
average of a function ( )xu  as ( )xu , while in a volume-averaged sense we write ( )xu . 



 

 

 
 

Figure  1: A real micrograph of a transverse plane section of the fiber tow 
 

2 Description of a microstructure of random composites 
 
To reflect a random character of heterogeneous media it is convenient to introduce the 
concept of an ensemble - the collection of a large number of systems which are different 
in their microscopical details, but they are identical in their macroscopic details. Then, 
effective or expected value of some quantity corresponds to the process of its averaging 
through all systems, forming the ensemble. 
 To that end, consider a sample space S with individual members denoted as .α  
Define ( )αp as the probability density of α in S. Then an ensemble average of function 

( )α,F x  at a point x is provided by 
 
                                              ( ) ( ) ( ) .p,FF

S
ααα d∫= xx                                                  (1) 

 
In the context of quantification microstructure morphology, an ensemble represents the 
collection of material micrographs taken from different samples of the material. To 
describe a random microstructure we introduce a characteristic or indicator function 

( )αχ ,r x , which is equal to one when point x lies in phase r in the sample α  and equal 
to zero otherwise  
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The symbol ( )αrD  denotes here the domain occupied by r-th phase in the sample α . 
For a two-phase fibrous composite, m,fr = , characteristic functions ( )αχ ,f x  and 

( )αχ ,m x  are related by 
 
                                    ( ) ( ) .,, fm 1=+ αχαχ xx                                                               (3) 
 



 

 

With the aid of function rχ , the general n - point probability function 
nrrS ,,1 K is given 

by [1, 10]. 
 
                              ( ) ( ) ( ).,,,, 11,, 11

αχαχ nrrnrr nn
S xxxx LKK =                                        (4) 

 
Thus, 

nrrS ,,1 K
 gives the probability of finding n points nxx ,,1 K  randomly thrown into a 

medium located in the phases nrr ,,1 K . We limit our attention to functions of the order 
of one and two. 
 Analysis of random composites usually relies on various statistical assumptions such 
as ergodic hypothesis, spatial homogeneity or isotropy, which may simplify the 
computational effort to a great extent. In particular, the ergodic hypothesis demands all 
states available to an ensemble of the systems to be available to every member of the 
system in the ensemble as well [1]. Then, the spatial or volume average of function 

( )αχ ,xr  given by 
 

                                  ( ) ( )∫ +=
∞→ V rVr ,

V
lim, yyxx d1 αχαχ ,                                           (5) 

 
is independent of α  and identical to the ensemble average 
 
                                            ( ) ( ) .rrr c== xx χχ                                                           (6) 
 
For periodic composites represented by a unit cell Ω  it assumes the form 
 

                          ( ) ( )∫∫ Ω∞→
+

Ω
=+ yyxyyx d1d1 αχαχ ,,

V
lim rV rV

.                                    (7) 

 
The above assumption is usually accepted as an hypothesis subject to experimental 
verification. The statistical homogeneity assumption means that the value of the 
ensemble average is independent of the position of the coordinate system origin. Then, 
for example, the two-point matrix probability function reads 
 
                                               ( ) ( )1221, xxx mmmm SS = ,                                                    (8) 
 
where ijij xxx −= . When making the statistical isotropy assumption, we assume that 
the ensemble average is not only independent of the position of the coordinate system 
origin but of the coordinate system's rotation as well. Then 
 
                                                ( ) ( ),, 1221 rSS mmmm =xx                                                     (9) 
 
where ijijr x= . For the microstructure in Fig. 1, the validation of ergodic hypothesis 
and assumption of statistical isotropy is outlined in [12]. When accepting these 
assumptions, we may exploit a number of other functions, which provide the desired 
statistics of the composite sample. Here we introduce the pair distribution function 2g  
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where K is the second order intensity function [8]. For isotropic and ergodic medium the 
above descriptors are uniquely related to the two-point matrix probability function 

mmS [11], in the form 
 
                                      ( ) ( ) ( ) ( )12

222
12212 1 rMRrVrSmm ρρπρ ++−=  

                                        ( ) ( ) ( ) ( )∫∫= 4324133412 dd rrrmrmrhrM  

                                            ( ) ( ) 12 −= rgrh                                                                 (11) 
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where ( )rV2  is a union of two circles distant by r and R is the fiber radius. For 
numerical evaluation of individual functions we refer the reader to [12]. 
 

3 Effective properties by Hashin-Shtrikman variational   
principle 

 

 
 
     Figure  2: Body with prescribed surface displacements including eigenstresses 
 
 This section is devoted to the prediction of the response of random composite 
materials using the Hashin-Shtrikman variational principle. First, we focus on 
theoretical aspects associated with the H-S variational formulation for anisotropic and 
non-homogeneous bodies with displacements uu =  prescribed along the entire 
boundary S of the composite. In addition, eigenstrains (stress free strains) or 
eigenstresses are admitted in the present formulation. This formulation then provides 
rigorous upper and lower bounds on the effective thermoelastic constants of statistically 
homogeneous ergodic composites. 
 



 

 

3.1 Body with prescribed surface displacements and eigenstresses 
Suppose that an affine displacement field ( ) xxu E=0  compatible with a uniform strain 
E is prescribed along the boundary S of a homogeneous comparison medium (Step I) 
characterized by the stiffness matrix L0. The corresponding uniform strain E and stress 
Σ  fields are related through constitutive the law in the form 

 
                                    .on    ,Ωin     00 SE uuL ==ΣΣΣΣ                                              (12) 
 
The local stress ( )xσσσσ  at point x in Ω of a composite is found by superimposing the 
solution of the local problem displayed in Fig. 2 Step II. The respective governing 
equations are then given by 
 
                                             ( )  Ω,in     0 0L =+⋅ ττττεεεε∇∇∇∇                                                (13) 
                                     ( ) Ω,in     0 0LL =−−− λλλλεεεεττττ                                                 (14) 
                                     Son    Ω,in   0 0uuuu =′−=′ ,                                                 (15) 
                                                         ,Ωin    E−=′ εεεεεεεε                                              (16) 
                                                    Ωin   ΣΣΣΣσσσσσσσσ −=′ .                                                  (17) 
 
The unknown polarization stress ( )xττττ is yet to be found such that the local stress derived 
from the original problem  
 
                          ( ) ( ) ( ) ( ) Ω+= in   xxxLx λλλλεσ ,  ,Son    uu =                                         (18) 
 
and the one provided by the two step auxiliary procedure  
 
                                               ( ) ( ) ( )xxLx ττττεεεεσσσσ += 0 ,                                                     (19) 
 
are equal. The eigenstress vector ( )xλλλλ  in Eq. (18) may represent several distinct 
physical phenomena such as thermal effects, schrinkage, plasticity, etc. A formulation 
equivalent to Eqs. (13) and (14) may be obtained by performing a variation of the 
extended functional 
 

                               ( ) ( ) ( )(∫ −−−−= −

Ω

1
0

TT

2
1 λλλλττττλλλλττττΣΣΣΣττττ LLEU  

                                     ) Ω+′++ − d2 1TTT λλλλλλλλττττεεεεττττ LE .                                                  (20) 
 
Setting 
 

                    ( ) ( )[ ]{ }∫Ω
− 0=Ω′−′+−−−−= d2

2
1 TT1

0
T ττττεεεεεεεεττττεεεελλλλττττττττττττ δδδδ LLU ,        (21) 

we find that Eq. (14) is one of the stationarity conditions of ττττU , while the second 
condition, Eq. (13), follows after recasting the remaining terms in the brackets. Finally, 



 

 

it can be proven that the stationary value SU ττττ  of the potential ττττU  equals the actual 
potential energy stored in the anisotropic and heterogeneous body 
 

                                           ( ) ( ) ,d
2
1 T∫ Ω−−= µµµµεεεεµµµµεεεεττττ LSU                                         (22) 

 
where  
 
                                                             λλλλµµµµ 1−−= L ,                                                      (23) 
 
 is the vector of eigenstrains (stress-free strains). The function ττττU  attains its maximum 
( ) ( )0  if  0 LL −<δ2

ττττU  positive definite and its minimum if ( )0LL −  is negative 
definite for all Ω∈x . 
 

3.2 Response of random composites 
 
Consider the H-S functional, Eq. (20), for a given sample α . The fluctuation part of the 
local strain ( )xεεεε  reads 
 
                  ( ) ( ) ( ) ( ) ( )( ) ( ),E,, xxxxxx ′Ω−′′−=−=′ ∫Ω

∗ d0 ααα ττττττττεεεεεεεεεεεε                      (24) 

 
where the specific form of ∗

0εεεε  can be found in [9]. ττττ represents the mean or volume 
average of ( )xττττ . Subscript 0 is used to identify this operator with the homogeneous 
reference medium. Eq. (24) then allows to rewrite Eq. (20) as 
 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )(∫Ω − −−−−= αααααα ,,,,,EU xxLxLxx λλλλττττλλλλττττΣΣΣΣττττ
1

0
TT

2
1  

             ( ) ( ) ( ) ( ) ( )( ) ( )∫Ω
∗ ′Ω−′′−++ xxxxxx d2 0

TT αααα ττττττττεεεεττττττττ ,,E,  

             ( ) ( ) ( )) ( ) .,,, xxxLx Ω+ − d1T ααα λλλλλλλλ                                                                 (25) 
 
Details are given in [9]. If each phase r of a randomly arranged composite is 
homogeneous with moduli ,,,1, nrr K=L  then the material stiffness matrix in the 
sample α can be expressed as [3], 
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−

=
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r
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1
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and the ensemble average of L is 
 

                                                 ( ) ( )∑
=

=
n

r
rr S

1
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Similarly, the trial field for ττττ  and eigenstress λλλλ at any point x located in the sample α  
are provided by 
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with the respective ensemble averages written as 
 

                                         ( ) ( ) ( ) ( ) ( ) ( )∑ ∑
= =

==
n

r
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r
rrrr SS
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., xxxxxx λλλλλλλλττττττττ                       (29) 

 
To facilitate the solution of the present problem the material is assumed to be ergodic 
and statistically homogeneous. Therefore, 
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===
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r
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r
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Substituting Eqs. (28) and (30) into Eq (25) yields the extended averaged form of the 
Hashin-Shtrikman principle 
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Then, assuming a piecewise uniform variation of eigenstress vector λλλλ and polarization 
stress ττττ ( ) ( )( )rrrr , ττττττττλλλλλλλλ == xx , setting (recall ergodicity assumption) 
 

                                         ( ) ∑
=

==
n

r
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1
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and then performing variation with respect to rττττ provides the extended form of the 
stationarity condition 
 

              ( ) ( ) ,,,,,E nrccc rrrr

n

s
srsrrr K211

0
1

1
0 =−+=−− −

=

− ∑ λλλλττττττττ LLALL           (33) 

 
where the microstructure-dependent matrices Ars are independent of x and are provided 
by 

                     ( ) ( )[ ] ( )xxxxxA ′Ω−′−′−= ∫Ω
∗ d 0 srrsrs ccSεεεε                                                    

                              ( ) ( ) ( ) ( ) ( ) ( ),xxxxxxxx ∫∫ Ω

∗

Ω

∗ Ω′=′Ω′−′′−= d d 00 rsrs SS εεεεεεεε              (34) 



 

 

where rsS ′  denotes the fluctuating part of Srs under the no-long range orders hypothesis. 
The preceding formula can be further rewritten as 
 

( ) ( ) ( )xxxA ∫Ω
∗ Ω′= d 0 rsrs Sεεεε  
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where the operator F  represents the Fourier transform. The property of F  provides 
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Since ( ) ( )ξεξε ∗∗ =− 00

~~ we finally arrive at 
 

                                
( )

( ) ( ) ( )ξξξξξξξξξξξξεεεε ′Ω′′′= ∫Ω
∗ d 

2
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0 rsdrs S~~
π
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 Note that Fourier's transform ∗

0εεεε~  can be obtained for any homogeneous anisotropic 
reference media (see  [3]), which is not generally possible for function ∗

0εεεε  itself. 

Therefore, once we are able to compute the values of rsS~ ′  we may evaluate integral (37) 
by an appropriate numerical procedure. Finally, having determined the value of Ars, the 
solution of system (33) can be formally written in the form 
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from which 
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Once the matrices Trs are known, the overall constitutive law yields 
 
                                                      ,E� λλλλσσσσ += L                                                            (40) 
 
where 
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4 Effective properties by periodic unit cell approach 
 
This section presents another approach to the analysis of random composites, which 
relies on a periodic unit cell. This concept is very convenient from the point of view of 
numerical analysis, as it allows to simulate wide range of inelastic behavior of 
composites ( see eg. [6] and references therein ). The crucial point now becomes to 
incorporate the random character of a microstructure into this approach. Here, we offer 
a simple procedure based on aforementioned microstructural statistics. 
 

4.1 Formulation of Periodic Unit Cell 
 
In our previous work [12] we suggested that both the two-point probability function and 
the second-order intensity function can be exploited to generate the desired periodic unit 
cell (PUC). Such a PUC should posses similar statistical properties as the original 
material. We argue that if the PUC has a statistically similar spatial distribution of fibers 
as the real  microstructure it will also posses similar thermomechanical properties. The 
PUC is constructed here by matching the second-order intensity functions of the real 
microstructure and the unit cell 
 

                                        ( ) ( ) ( )∑
=








 −
=

mN

i i

iiN ,
r

rKrK
H,H,xF

1

2

221 π
                                  (43) 

where ( )irK  represents the second order intensity function of the original 
microstructure, K(ri) corresponds to the PUC and Nm is the number of matching points. 
Vector { }NN y,x,,y,xx K11=  stands for the configuration of particle centers of the 
periodic unit cell; xi and yi correspond to x and y coordinates of the i-th particle. The 
augmented simulated annealing method can be used to minimize the objective function 
Eq. (43).  Details of the algorithm can be found in [5]. Two representatives of the 
periodic unit cell constructed for the graphite/epoxy material system are displayed in 
Fig. 3. 

 

 

 

 

 

 

Figure 3: Periodic unit cells: (a) 5-fibres PUC, (b) 10-fibres PUC 
 



 

 

4.2 Thermomechanical problem 
 
We now recall the thermomechanical analysis of a representative volume element 
(RVE) having well defined geometry and boundary conditions. In particular we 
consider a periodic representative volume defined in terms of a statistically equivalent 
unit cell (UC) derived in the preceding part. 
 Suppose that the UC is subjected to boundary displacements u and uniform change 
of temperature θ∆  resulting in a uniform strain E throughout the UC. The local 
constitutive equation is then written in the form 
 
                                          ( ) ( ) ( )( ) ( )[ ],xxuxLx 0εεσ −=                                                 (44) 
 
where ( ) ( ) θ∆= xmx0ε represents the initial thermal strain or eigenstrain; vector m(x) 
lists the coefficients of thermal expansion for the material point x. In view of the 
periodic boundary conditions imposed on the unit cell the strain and displacement fields 
in the UC admit the following decomposition 
 
                                              ( ) ( ) , xuxxu ∗+⋅= E                                                  (45) 
                                              ( ) ( ). xx ∗+= εεεεεεεε E                                                       (46) 
 
The periodicity of ∗u  implies that the average of ∗ε  in the unit cell vanishes. Hence 
 

                   ( ) ( ) , xx ∗+= εEε                  ( ) ( )∫Ω
∗∗ =

Ω
= 0xxx d 1 εε .                    (47) 

 
Next, assume a virtual displacement ∗+⋅= uxu δδEδ , with ∗uδ  being periodic. Then 
 
                                , TT ΣΕσε δδ =                          . σΣ =                                (48) 
 
Eq. (48), also known as the Hill lemma, implies that the average microscopic internal 
work is precisely the macroscopic virtual work.  
 It is often convenient to impose surface tractions compatible with the macroscopic 
uniform state of stress Σ . Such a loading condition is more general but leaves us with 
unknown overall strain E and periodic displacement field ∗u  to be determined. 
Substituting the microscopic constitutive equation (44) into Hill's lemma Eq. (48) gives 
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0
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and consequently with the help of Eq. (46) we find 
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0
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0
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Since Eδ and ∗εδ are independent, the preceding equation can be split into two 
equalities 
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TT εεδδ −+= ∗LL EEE ΣΣΣΣ ,                                             (51) 

                                          ( )0
TT εεεEε −+= ∗∗∗ LL0 δδ . 

 
In the FE approach the matrix B, relating strains and displacements in the form 

∗∗ = Buε  and consequently, ∗∗ = uBδδε , is to be applied to Eq. (51) to get the linear 
associated system 
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 When excluding the thermal effects the above equation can be used to derive the 
coefficients of the effective compliance matrix M as volume averages of the local fields 
from the solution of four successive elasticity problems. To that end, the periodic unit 
cell is loaded, in turn, by each of the components of Σ , while the other remaining 
components vanish. The volume strain averages normalized with respect to Σ  then 
furnish individual columns of M. However, when the UC is loaded by uniform 
temperature change equal to unity, the components of the overall average strain then 
comply with the effective coefficients of thermal expansion m. 
 

4.3 Macroscopic constitutive law by averaging 
 
In this section we examine connections between the thermal and mechanical properties 
of composite materials. In particular, we rederive the macroscopic constitutive law of 
composites subjected to thermomechanical loading by means of standard averaging. We 
start with the local constitutive law written as 
 
                                         ( ) ( ) ( ) ( )xmxxMx θ∆+= σσσσεεεε .                                                (53) 
 
 Next, recall the strain volume average in the form 

             ( ) ( ) ( ) ( )[ ]∫Ω Ω∆+
Ω

= d 1 xmxxMx θσσσσεεεε  

                          ( ) ( ) , 0                                  ,  =+= ∗∗ xx εεεεεεεεE                             (54) 
 
which directly provides the macroscopic constitutive law 
 

                                 ( ) ( ) ( )[ ]∫Ω ∆+=Ω+
Ω

. d 1 mMxmxxM θθ ΣΣΣΣ∆∆∆∆σσσσ                           (55)  

Introducing the mechanical and thermal stress influence functions B(x) and b(x), 
respectively, such that 
 
                                                      ( ) ( ) ( ) , θ∆+= xbxBx ΣΣΣΣσσσσ                                         (56) 



 

 

we find 

                           ( ) ( ) ( ) ( ) ( ) ( )( )∫∫ ΩΩ
Ω∆++Ω= θd d xmxbxMxBxMx ΣΣΣΣσσσσ .             (57) 

 

When assuming piecewise uniform variation of phase thermal and elastic properties, Eq. 

(57) readily provides the macroscopic compliance matrix M and the macroscopic 

thermal strain vector m as  
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r
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When admitting only thermal effects, 0=ΣΣΣΣ , we get  
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r r

rr
r c . Ωd 
Ω
Ω

Ω
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It is also useful to recall the familiar Levin formula given by 
 
                                                       ∑=

r
 

T .rrrc mBm                                                     (60) 

 

When setting 0=∆θ  the system (52) can be used to extract the phase concentration 
factor tensor Br.The phase thermal stress concentration factor br follows again from Eq. 
(52) when setting ,0=ΣΣΣΣ 1=∆θ , as phase volume average of the local stress found in 
the phase r. Thus both Eqs. (52) and (58) can be exploit to obtain the effective 
compliances and coefficients of thermal expansion listed in vector m. 
 

5 Results 
 
This section summarizes numerical results derived from both approaches for the 
graphite-epoxy composite system displayed in Figure 1. The material properties are 
stored in Table 1. The analysis was carried out under the generalized plane strain 
conditions. 
 
 

Table 1: Material properties of T30/Epoxy system 
 

phase EA 
[GPa] 

ET 
[GPa] 

GT 
[GPa] 

Aυ   
 

Aα   
[K-1] 

Tα   
[K-1] 



 

 

fiber 
matrix 

386 
5.5 

7.6 
5.5 

2.6 
1.96 

0.41 
0.40 

-1.2 x 10-6 
2.4 x 10-5 

7 x 10-6 
2.4 x 10-5 

 
 
Tables 2 and 3 list effective elastic stiffnesses and coefficients of thermal expansion 
found from the Hashin-Shtrikman variational principle. The Fourier transform of rsS ′  
was first obtained by applying the discrete Fourier transform (DFT) to digitized image 
of Fig. 1. The integral formula (37) was then evaluated to get the desired 
microstructure-dependent matrices Ars. When incorporating these matrices into Eqs. 
(41) and (42) we get the overall effective stiffness matrix L�  and the overall thermal 
stresses mL�−=λλλλ . 
 In addition, the effective moduli together with thermal expansion coefficients derived 
for selected periodic unit cells are stored in Tables 4 and 5. Clearly, the Finite Element 
solutions fall within individual bounds. Moreover, slight anisotropy possessed by the 
present microstructure can be captures by this approach. Finally, Table 6 shows that the 
values of effective coefficients of thermal expansion obtained using relations (52), (58) 
and (60) are identical. 
 When compared to the unit cell approach the method based on the Hashin-Shtrikman 
variational principle is much faster and thus preferable when evaluating the 
macroscopic elastic response of real composites. Not the same might be true when 
inelastic deformations are decisive. But this has yet to be confirmed. 
 
 

Table 2: HS principle approach : Effective elastic stiffnesses [GPa] 
 

Bitmap  L11   L22   L33  
reslolution LB FEM UB LB FEM UB LB FEM UB 
122 X 84 10.733 10.762 10.770 10.713 10.725 10.746 2.211 2.215 2.218 
244 X 179 10.740 10.762 10.777 10.720 10.725 10.752 2.209 2.215 2.216 
488 X 358 10.730 10.762 10.763 10.721 10.725 10.754 2.209 2.215 2.216 
976 X 716 10.730 10.762 10.763 10.721 10.725 10.764 2.209 2.215 2.216 
 
 

Table 3: HS principle approach : Effective coefficients of thermal expansions [K-1] 
 

Bitmap   αx x 105     αy x 105     αz x 105   cf 

reslolution LB FEM UB LB FEM UB LB FEM UB   
122 X 84 2.248 2.269 2.278 2.230 2.248 2.253 -7.488 -7.463 -7.504 0.438 
244 X 179 2.256 2.269 2.285 2.236 2.248 2.259 -7.455 -7.463 -7.471 0.436 
488 X 358 2.256 2.269 2.287 2.237 2.248 2.260 -7.455 -7.463 -7.471 0.436 
976 X 716 2.256 2.269 2.287 2.237 2.248 2.260 -7.455 -7.463 -7.471 0.436 
 
 

Table 4: PUC approach: Effective elastic stiffness [GPa] 
 

Unit cell L11 L22 L33 L44 cf 
Original 10.76 10.73 2.215 177.2 0.44 



 

 

2 fibres PUC 10.78 10.75 2.202 177.2 0.44 
5 fibres PUC 10.76 10.73 2.215 177.2 0.44 
10 fibres PUC 10.76 10.73 2.215 177.2 0.44 
Hexagonal array 10.74 10.74 2.213 177.3 0.44 

 
 

Table 5: PUC approach: Effective coefficients of thermal expansion [K-1] 
 

Unit cell         αx x 105         αy x 105       αz x 105 
Original 2.290 2.268 -7.319 
2 fibres PUC 2.293 2.267 -7.318 
5 fibres PUC 2.285 2.267 -7.319 
10 fibres PUC 2.289 2.267 -7.319 
Hexagonal array 2.285 2.285 -7.279 

 
 

Table 6: Comparison of relations (52),(58) and (60) for 5-fiber PUC [K-1] 
 

Relation         αx x 105 αy x 105 αz x 105 
Equation 52 2.285 2.267 -7.319 
Equation 58 2.285 2.267 -7.319 
Equation 60 2.285 2.267 -7.319 

 
 

6 Conclusions 
 
Effective thermoelastic properties were found for a fibrous graphite-epoxy composite 
system with fibers randomly distributed within a transverse plane section of the 
composite aggregate. Two reliable and efficient approaches were introduced in the 
present work. Although different at their theoretical formulation both approaches are 
closely tight to the same statistical descriptors generally used to quantify random 
microstructures.  
 The first approach discussed in Section 2 is closely related to well known effective 
medium theories. Here, the most widely used variational principle of Hashin and 
Shtrikman was reviewed and extended. A very efficient numerical procedure based on 
the DFT which directly exploits digitized images of real microstructures was 
implemented. Fourier transform approach applied when solving the resulting integral 
equations is rather advantageous as it allows an arbitrary choice of the reference 
medium  so that often encountered anisotropy of individual phases creates no obstacles 
in the solution procedure. 
 The second approach is based on construction of various periodic unit cell models 
combined with the finite element method. The complexity of real microstructures was 
reflected here in more complicated unit cells having larger number of particles. The 
required number of particles and their arrangement was determined such that the 
macroscopic response of a unit cell should be identical to the behavior of a real 
composite. A simple and intuitive approach based on microstructural statistics was 
proposed to derive such periodic unit  cells. An applicability of the present approach 



 

 

was confirmed by evaluating effective thermoelastic properties of the selected 
composite system from both the small period unit cells (five to ten fibers unit cells) and 
considerably larger unit cells having of two orders of magnitude more particles (three to 
five hundred fibers). The supplemented numerical examples showed that the PUC with 
a small number of reinforcement was able to capture the overall behavior of random 
composites with a considerable level of confidence. 
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