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Abstract

Micromechanical Analysis of Random Composites

by Michal Šejnoha and Jan Zeman

Effective elastic properties are found for a fibrous graphite-epoxy composite system with

fibers randomly distributed within a transverse plane section of the composite aggregate.

Two different approaches are examined. The first approach assumes a well defined geometry

of the fiber arrangement and specific boundary conditions. In the modeling framework, the

complicated real microstructure is replaced by a material representative volume element con-

sisting of a small number of particles, which statistically resembles the real microstructure.

Periodic distribution of such unit cells is considered and the finite element method is called

to carry out the numerical computation. The theoretical basis for the second approach are

the Hashin-Shtrikman variational principles. The random character of the fiber distribu-

tion is incorporated directly into the variational formulation employing certain statistical

descriptors.

A number of statistical descriptors suitable for the microstructure characterization of a

random media are examined first. Several methods for their determination are proposed

and tested for some simple theoretical models of microstructures. Additionally, a validity of

various statistical hypotheses usually accepted for a random heterogenous media is checked

for the real microstructure represented here by the graphite fiber tow embedded into the

polymer matrix.

Suitable optimization procedure formulated in terms of selected statistical descriptors

is proposed to derive the desired unit cell. A variety of stochastic optimization algorithms

ix



is examined to solve this problem. Judging from our experience with similar optimization

problems, the genetic algorithms based solution techniques are explored. This study suggests

that the augmented simulated annealing method, which effectively combines the essentials of

genetic algorithms with the basic concept of the simulated annealing method, is superior to

other approaches. Applicability of such unit cells is tested for polymer systems. Nevertheless,

other systems such as ceramic or metal matrix systems may also benefit from the present

work.

A number of numerical studies are performed to quantify individual unit cells. The objec-

tive is to identify a number of particles required for specific problems to provide a sufficiently

accurate representation of the behavior of real composites. A standard problem of deriv-

ing the effective mechanical properties is considered first. A general approach permitting

either strain or stress control is pursued. It is observed that the unit cell consisting of five

fibers only provides reasonably accurate estimates of the macroscopic properties. Similar

conclusion follows from the thermal and viscoelastic problems considered next.

In certain applications the finite element tool used with the unit cell analysis may prove

to be unnecessary expensive. In such a case, one may appreciate well known effective medium

theories where applicable. Here, the most widely used variational principles of Hashin and

Shtrikman extended to account for the presence of various transformation fields defined as

local eigenstrain or eigenstress distributions in the phases are revisited. Random character of

fibers arrangement is described here by the two-point probability function. When used with

the Hashin-Shtrikman variational principles this function provides sufficient information for

obtaining bounds on the effective material properties of real composites with statistically ho-

mogeneous microstructures. The Fourier transform is successfully implemented when solving

the resulting integral equations.
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Chapter 1

INTRODUCTION

The doubtless benefits offered by composite materials such as a high strength, light

weight, non-corrosive properties, etc., have recently attracted many design engineers in

civil engineering industry primarily in conjunction with rehabilitation and repair of con-

crete and masonry structures. A lucid discussion on this subject is given in the work of

[Šejnoha et al., 1999]. An endless search for reliable and low cost structural and material

systems resulted in inexpensive fabrication methods, which have made composites affordable

to other applications such as facade and structural parts of both commercial and industrial

buildings and even bridges.

Among the most prominent material systems complying with the aforementioned require-

ments remain polymer matrix systems reinforced either by aligned fibers, whiskers or fabrics.

The latter ones, in particular, are under continuous rise in civil infrastructure applications.

They are typically supplied in form of thick sandwich and laminated plates or woven tubes.

It has been long ago recognized that an overall response of such structures is highly

influenced by micromechanical behavior of the composite systems. As suggested by Fig. 1.1,

showing a sample of a graphite fiber fabric – polymer matrix composite system, such a

research venture involves analyses on different scales. This example clearly manifests the

importance of multi-scale modeling starting from large structural element, e.g. composite

ply Fig. 1.1(a), having certain effective or macroscopic properties derived for the geometry

specified on the meso-scale, Fig. 1.1(b). A classical problem of determining the effective

elastic properties becomes even more complex when taking the level of constituents, micro-
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(a)

Homogeneous ply

(a)

(b) (c)

Fiber towFabric geometry

Figure 1.1: Graphite fiber fabric – polymer matrix composite

scale Fig. 1.1(c), into consideration. Such a step creates demands for special techniques

enabling to determine the effective properties of disordered media.

To develop a multi-scale numerical model requires to start already at the micro-scale with

the fiber and matrix mixture forming a fiber tow. Up to date the simple averaging techniques

([Hill, 1965, Mori and Tanaka, 1973, Benveniste, 1987] among others) were mostly used to

generate effective properties of this basic building element. However, since fibers are ran-

domly distributed within the bundle and since this distribution is likely affected by the initial

fiber pre-stress it is advisable to treat homogenization on this level from the probabilistic

methods point of view. To this date, there exists a well-founded physical and mathematical
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Figure 1.2: A real micrograph of a transverse plane section of the fiber tow

basis for describing the materials statistics including phase volume fractions and at minimum

the two-point correlation function. A vast body of literature has been devoted to this sub-

ject (see [Beran, 1968, Drugan and Willis, 1996, Torquato, 1998, Zeman and Šejnoha, 2001]

to cite a few).

Much of the work on characterizing the microstructure of heterogeneous materials now

relies on the existence of images of real materials. The material system under consideration

viewed under the scanning electron-microscope appears in Fig. 1.2. Such a medium is ev-

idently disordered and conventional periodic unit cell models such as the hexagonal array

model [Teplý and Dvořák, 1988] are not applicable. To provide for the lack of periodicity,

one may incorporate various types of n-point statistical descriptors in the analysis of dis-

ordered media. Such statistical descriptors introduce information beyond that contained in

the volume fractions. It turns out that the two-point correlation function Srs, which gives

the probability of finding two points x1,x2 randomly thrown into the media located in the

phases r, s, is sufficient in determining the effective properties of the composite displayed in

Fig. 1.2.
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Knowing this function, the evaluation of overall response on the smallest size–scale calls

for a suitable micromechanics analysis. Perhaps the most widely used approach draws on

the Hashin-Shtrikman variational principle [Hashin and Shtrikman, 1963, Willis, 1977]. This

approach has received considerable attention when the material deforms in proportion to the

magnitude of the applied forces and temperature changes. Although this approach does not

preclude description of material behavior at strains beyond the elastic limit, it is usually

preferable to tackle such a problem with the help of a representative volume element defined

in terms of a suitably chosen periodic unit cell (PUC).

As suggested by [Povirk, 1995], the original microstructure characterized by a certain sta-

tistical function, e.g., the two–point matrix probability function Smm, can be replaced by a

material representative volume element (RVE), which approximates the real material statis-

tics as close as possible. Periodic microstructures are usually treated with this approach.

Therefore, the RVE is assumed to be surrounded by the periodic replicas of itself. This

step allows to substitute the complicated real microstructure by a periodic unit cell which

consists of a small number of reinforcements and yet possesses similar statistical properties

as the original material. The argument is that if the PUC has a statistically similar spatial

distribution of fibers as the real microstructure it will also possess similar thermomechanical

properties. Such a unit cell follows from an optimization procedure which keeps the difference

between the statistical functions for the real microstructure and the PUC at minimum. This

idea has been successfully implemented by [Zeman and Šejnoha, 2001, Zeman, 2000]. Stan-

dard homogenization technique can be used [Suquet, 1987, Michel et al., 1999] to analyze

such unit cells under various thermomechanical loading conditions.

Detailed numerical simulations on the micro-scale, Fig. 1.1(c), combined with carefully

selected laboratory measurements should offer homogenized constitutive law for graphite

fiber tow/epoxy matrix mixture. Such a result then allows to carry out a proper analysis on

the meso-scale. On this level of sophistication the computational challenge becomes obvious

when examining the sample of woven composite plate in Fig. 1.1(b). A periodic character

of the geometry shown in Fig. 1.1(b) suggests to formulate a representative volume element
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in terms of a unit cell. The main task at this level is to find the macroscopic response of

the unit cell for prescribed macroscopic strains or stresses resulted from the analysis on the

macro-scale, Fig. 1.1(a). At this point the waviness and noticeable misalignment of fiber

tow can be accounted for using tools provided again by statistical mechanics.

What has been said so far suggests possible routes one may wish to consider when dealing

with complex composite structures such as the one in Fig. 1.1. The proposed approach

inevitably creates demands for efficient computational strategies and algorithms linked to

parallel environment.

The present work is confined to the micro-level. Various novel approaches discussed so

far are introduced in very detail. A special attention is paid to the micromechanical analysis

of random composites. Loading conditions are limited to those, which maintain the local

stresses below the elastic limits. Nevertheless, residual strains associated with thermal effects

or creep deformation are admitted.

The work is organized as follows. Chapter 2 reviews basic statistical descriptors for the

two-phase random media. First, the concept of an ensemble is briefly discussed and the

principle of ensemble averaging is outlined. Successively, various hypotheses often applied

to random composite materials are remembered and tested for microstructures similar to

that of Fig. 1.2. Microstructural descriptors suitable for the characterization of the two-

phase two-dimensional media are introduced together with methods for their evaluation.

Example results illustrate their applicability for the selected types of microstructures. A

special attention is devoted to real composite systems represented here by a graphite–fiber

tow bonded to the polymer matrix.

Chapter 3 deals with the micromechanical analysis of periodic microstructures. It takes

the reader through a complex optimization process, which provides a unit cell with the same

material statistics as the real composite. A variety of stochastic simulation techniques based

on genetic algorithms is implemented to accomplish this task. The resulting periodic unit cell

is then subjected to a set of thermomechanical loading conditions leading to uniform overall

stress and strain fields. Applications to material systems prone to viscoelastic deformation



6

are visited in conjunction with generalized viscoelastic models of Maxwell or Kelvin types.

Micromechanical analysis of random composites combined with the Hashin-Shtrikman

variational principles is the subject of Chapter 4. Both the primary and dual principles,

extended to account for the presence of initial strains, are revisited in a systematic way. The

main objective are macroscopic constitutive equations incorporating the random nature of

the microstructure. The Fourier transform based approach is suggested to derive various

microstructure dependent tensors or matrices entering the constitutive law. Demanding

theoretical background is exposed in associated appendices.

Customary tensor and vector/matrix notation is used throughout this text. Tensor quan-

tities are denoted either by lightface Greek letters e.g. σij, Lijkl ; (6× 1) and (4× 1) vectors

are denoted by boldface italic letters, (6× 6) and (4× 4) matrices are denoted by uppercase

boldface Roman letters e.g. L and scalars are denoted by lightface e.g. r. The inverse of

non-singular matrix is denoted by L−1 and LT stands for transposition of matrix L. Stan-

dard contracted notation is adopted when appropriate, thus 1 ≡ 11, 2 ≡ 22, 3 ≡ 33, 4 ≡ 23,

5 ≡ 13 and 6 ≡ 12. To distinguish the ensemble and volume averages, we adopt notation

introduced by Beran [Beran, 1968] and denote an ensemble (or probabilistic) average of a

function u(x) as u(x), while in a volume-averaged sense we write 〈u(x)〉.



Chapter 2

QUANTIFICATION OF MICROSTRUCTURE MORPHOLOGY

Micromechanical analysis of composite materials with disordered microstructure is usu-

ally limited to applications of various approximate techniques such as the self-consistent or

the Mori-Tanaka methods [Dvorak and Benveniste, 1992a]. However, when a certain knowl-

edge of the real microstructure is available, the estimates of local fields can be improved by

treating random composites. Such a modeling framework is considered throughout this text.

This opening chapter outlines evaluation of various statistical descriptors, which arise in

the analysis of two–phase fibrous composites with random character of fibers arrangement.

While the specific applications discussed in Chapters 3 and 4 are limited to the graphite

fiber tow embedded in the polymer matrix, the theoretical background introduced in this

chapter is quite general and can be applied to any two–phase random heterogeneous media

of arbitrary phase geometry.

Section 2.1 reviews basic concepts and hypotheses associated with quantification of mi-

crostructure morphology. Individual statistical descriptors used in the present work are

introduced in Section 2.2. Their evaluation for various types of microstructures is presented

in Section 2.3. Finally, extension to a real composite system is provided in Section 2.4.

2.1 Basic concepts and hypotheses

To introduce the subject, imagine a collection of a large number of micrographs (ensemble)

describing the geometry of a two phase fibrous composite. Example of such a micrograph is

displayed in Fig. 2.1. Fig. 2.1(a) represents a portion of a graphite–fiber tow containing ap-

proximately twelve thousand fibers. A random cut consisting of about three hundred fibers
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(a) (b)

Figure 2.1: A real micrograph of a transverse plane section of the fiber tow

is shown in Fig. 2.1(b). Although having a large number of fibers, one can hardly assume

that such a representative can completely describe the morphology of the whole composite.

Simply taking similar micrographs from other parts of the fiber tow indicates substantial

difference in the microstructure from sample to sample. The resulting representative, which

would effectively sample all possible microstructural configurations, would be too large lead-

ing to enormous numerical calculations. To abandon such an unrealistic treatment one has

to recognize the random nature of geometrical arrangements of phases - it means that the

particular microstructure of a given sample yields only one possible arrangement of phases.

Therefore, instead of determining the exact value of some quantity at a given point (which

is sample dependent), attention is given to its expected or averaged or macroscopic value,

which incorporates information from all samples taken from a material.

2.1.1 Concept of an ensemble

To reflect a random character of a heterogeneous media it is convenient to introduce the con-

cept of an ensemble – the collection of a large number of systems which are different in their

microscopical details but they are entirely identical within a point of view of macroscopic de-
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tails (see e.g. [Beran, 1968, Boubĺık, 1996]). Within this concept, effective or expected value

of some quantity corresponds to the process of its averaging through all systems, forming

the ensemble.

To begin, consider a sample space S, identify individual members of this space by α

and define p(α) as the probability density of α in S (see [Drugan and Willis, 1996] and

[Kohler and Papanicalou, 1982] for further reference). Then the ensemble average of function

F (x, α) at point x is provided by

F (x) =
∫
S
F (x, α)p(α)dα. (2.1)

Following the above definition would require experimental determination of the ensemble

average of function F (x, α) for a given point x through the cumbersome procedure of manu-

facturing a large number of samples (which form the ensemble space S), measuring F (x, α)

for every sample and then its averaging for all samples. Therefore, it appears meaningful to

introduce certain hypotheses regarding the ensemble average, which substantially simplify

this task.

2.1.2 Ergodic hypothesis

This hypothesis demands all states available to an ensemble of the systems to be available

to every member of the system in the ensemble as well ([Beran, 1968]). Once this hypothesis

is adopted, spatial or volume average of function F (x, α) given by

〈F (x, α)〉 = lim
V→∞

1

V

∫
V
F (x + y, α)dy (2.2)

is independent of α and identical to the ensemble average,

〈F (x)〉 = F (x). (2.3)

This hypothesis allows to examine only one arbitrary member of the sample space, provided

that the sample is “sufficiently large” (see Eq. (2.2)). A possible way to fulfill this condition

is to assume a periodic composite described by a unit cell Ω. Then,

lim
V→∞

1

V

∫
V
F (x + y, α)dy =

1

Ω

∫
Ω
F (x + y, α)dy (2.4)
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so for the ergodic periodic composite medium, the ensemble average is equal to the volume

average taken over the unit cell.

2.1.3 Statistical homogeneity

Suppose that function F depends on n vectors x1, . . . ,xn. If the material is statistically

homogeneous the ensemble average of F is invariant with respect to translation [Beran, 1968,

Torquato and Stell, 1982], so the expression

F (x1, . . . ,xn) = F (x1 − y, . . . ,xn − y) (2.5)

holds for an arbitrary value of y. The most common choice is to set y = x1, so

F (x1, . . . ,xn) = F (0,x2 − x1, . . . ,xn − x1) = F (x12, . . . ,x1n), (2.6)

where xij = xj − xi.

2.1.4 Statistical isotropy

Further simplification arises when assuming the material to be statistically isotropic. In

such a case, the ensemble average is not only independent of the position of the coordinate

system origin but also of the coordinate system rotation. Under this hypothesis, the ensemble

average depends on the absolute value of vectors x12, . . . ,x1n only:

F (x12, . . . ,x1n) = F (rij) (2.7)

where rij = ‖xij‖, i = 1, . . . , n, j = i, . . . , n.

2.2 Microstructure description

A number of statistical descriptors are available to characterize the microstructure of a two–

phase random medium. This section describes two specific sets of descriptors which proved

to be useful in the present work. First, a set of general n–point probability functions, ap-

plicable to an arbitrary two–phase composite, is introduced. A different set of statistical
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functions deserves attention when considering a particulate composite. Both sets are intro-

duced through a fundamental random function relevant to the microstructure configuration.

Then, statistical moments of this function are identified as descriptors of the microstruc-

ture morphology. Finally, connection between individual sets of statistical descriptors is

demonstrated.

2.2.1 Microstructure description for general composites

Fundamental function and statistical moments. Consider an ensemble of a two-phase

random media. To provide a general statistical description of such a system it proves useful

to characterize each member of the ensemble by a random stochastic function– characteristic

or indicator function χr(x, α), which is equal to one when point x lies in phase r in the sample

α and equal to zero otherwise [Beran, 1968, Torquato and Stell, 1982],

χr(x, α) =

 1 x ∈ Dr(α)

0 otherwise.
, (2.8)

where Dr(α) denotes the domain occupied by r-th phase; r = m, f is further assumed to take

values m for the matrix phase while symbol f is reserved for the second phase. Except where

noted, a fibrous composite with aligned impenetrable fibers having circular cross-section of

equal radius is considered (f → fiber). For such a system the characteristic functions χf (x, α)

and χm(x, α) are related by

χm(x, α) + χf (x, α) = 1. (2.9)
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Following [Torquato and Stell, 1982, Beran, 1968, Drugan and Willis, 1996], we write the

ensemble average of the product of characteristic functions

Sr1,...,rn(x1, . . . ,xn) = χr1(x1, α) · · ·χrn(xn, α), (2.10)

where function Sr1,...,rn referred to as the general n-point probability gives the probability of

finding n points x1, . . . ,xn randomly thrown into media located in the phases r1, . . . , rn.

Functions of the first and second order. Hereafter, we limit our attention to functions

of the order of one and two, since higher-order functions are quite difficult to determine in

practice. Therefore, description of the random media will be provided by the one-point

probability function Sr(x)

Sr(x) = χr(x, α), (2.11)

which simply gives the probability of finding the phase r at x and by the two-point probability

function Srs(x,x
′)

Srs(x,x
′) = χr(x, α)χs(x′, α), (2.12)

which denotes the probability of finding simultaneously phase r at x and phase s at x′. In

general, evaluation of these characteristics may prove to be prohibitively difficult. Fortu-

nately, a simple method of attack can be adopted when accepting a reasonable assumption

regarding the material as statistically homogeneous, so that

Sr(x) = Sr, (2.13)

Srs(x,x
′) = Srs(x− x′). (2.14)

Further simplification arises when assuming the medium to be statistically isotropic. Then

Srs(x− x′) reduces to

Srs(x− x′) = Srs(‖x− x′‖). (2.15)

Finally, making an ergodic assumption allows to substitute the one-point correlation function

by its volume average,i.e., volume concentration or volume fraction of the r-th phase cr,

Sr = cr. (2.16)
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Limiting values. In addition, the two-point probability function Srs depends on the one-

point probability function Sr for certain values of its arguments such that

for x→ x′ : Srs(x,x
′) = δrsSr(x), (2.17)

for ‖x− x′‖ → ∞ : lim
‖x−x′‖→∞

Srs(x,x
′) = Sr(x)Ss(x

′), (2.18)

where symbol δrs stands for Kronecker’s delta. Relation (2.17) states that probability of

finding two different phases at a single point is equal to 0 (see also Eq. (2.9)) or is given by

the one-point probability function if phases are identical. Equation (2.18) manifests that for

large distances points x and x′ are statistically independent. This relation is often denoted

as the no-long range orders hypothesis (see e.g. [Willis, 1977]).

Finally, according to Eq. (2.9) we may determine one and two-point probability functions

for all phases providing these functions are given for one arbitrary phase. For one-point

probability function of statistically homogeneous and ergodic media, this relation assumes a

trivial form

cm = 1− cf . (2.19)

Relations for the two-point probability functions of statistically isotropic and ergodic

medium are summarized in Table 2.1. Note that symbol r which stands for ‖x‖ in Table 2.1

should not be mistaken with subscripted r used as a phase index heretofore.

Known function

Smm(r) Smf (r) Sff (r)

Smm(r) Smm(r) cm − Smf (r) cm − cf + Sff (r)

Smf (r) cm − Smm(r) Smf (r) cf − Sff (r)

Sff (r) cf − cm + Smm(r) cf − Smf (r) Sff (r)

Table 2.1: Relations between two-point probability functions
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2.2.2 Microstructure description for particulate composites

Another approach to the microstructure characterization can be adopted when the composite

material is particulate - it consists of particles with identical specific shape (e.g. ellipsoids,

cylinders etc.) embedded in a matrix phase. Note that fibrous composites fall under this

category. Microstructure morphology of such a composite can be described using only centers

of particles. This approach is frequently used in the statistical mechanics of liquids (see e.g.

[Boubĺık, 1996, Chapter 6]). Its principles will be applied here.

Fundamental function and statistical moments. Suppose that each sample α in S

is formed by N distinguishable particles with centers located at distinct points x1
α, . . . ,x

N
α

placed in a matrix of volume (area) V . Such a system of random points can be described

using the random field density function ψ(x, α) (see [Ponte Casteñada and Willis, 1995,

Markov, 1998] and references therein)

ψ(x, α) =
N∑
i=1

δ(x− xiα), (2.20)

where δ(·) stands for Dirac’s function.

The foregoing procedure is similar to that described in Section 2.2.1. The generic n-

particle probability density function ρn(x1, . . . ,xn) for distinct points x1, . . . ,xn is found by

ensemble averaging the product of basic functions,

ρn(x1, . . . ,xn) = ψ(x1, α) · · ·ψ(xn, α), (2.21)

which gives the probability density of finding a particle center in all points x1, . . . ,xn ran-

domly thrown into the material ([Boubĺık, 1996, Quintanilla and Torquato, 1997]).

Functions of the first and second order. To keep formal similarity with Section 2.2.1

we confine the following discussion to the one and two-particle functions only. Starting from

the generic one-particle probability density function modify Eq. 2.21 to read

ρ1(x) = ψ(x, α), (2.22)
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which gives the probability density of finding an inclusion centered at x. The generic two-

particle probability density function is then provided by

δ(x− x′)ρ1(x) + ρ2(x,x′) = ψ(x, α)ψ(x′, α), (2.23)

which represents the probability density of finding one inclusion centered at x and the second

one at x′. The first term in Eq. (2.23) is added to allow for points x and x′ become coincident.

This modification is easily justified by making an assumption about statistical homogeneity

to get

ρ1(x) = ρ1 (2.24)

ρ2(x,x′) = ρ2(x− x′). (2.25)

If the material is statistically isotropic the function ρ2(x− x′) reduces to

ρ2(x− x′) = ρ2(‖x− x′‖). (2.26)

Finally, making an ergodic assumption equals the value of the one-point probability density

function of statistically homogeneous media to the number of particle centers per unit volume

ρ1 = ρ = lim
V→∞

N

V
. (2.27)

Limiting values. Recall that ψ(x, α)ψ(x′, α) gives the probability density of finding par-

ticle centers located at points x and x′ randomly thrown into the sample. When points x

and x′ happen to coincide, this probability density is simply equal to the probability density

of finding a particle center at point x (note that one point x cannot be occupied by two

centers of distinguishable particles). Therefore,

for x→ x′ : ψ(x, α)ψ(x′, α) = ψ(x, α) = ρ1(x). (2.28)

However, when ‖x− x′‖ → ∞ we have

ψ(x, α)ψ(x′, α) = lim
‖x−x′‖→∞

ρ2(x,x′) = ρ1(x)ρ1(x′). (2.29)
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Combining Eqs. (2.24), (2.27) and (2.29) yields.

ρ1(x)ρ1(x′) = ρ2.

For statistically homogeneous and ergodic medium this suggests to introduce the radial or

pair distribution function g2(x− x′) [Axelsen, 1995, Boubĺık, 1996, Pyrz, 1994]

g2(x− x′) =
ρ2(x− x′)

ρ2
, (2.30)

which equals one for points x and x′ spread infinitely apart. Literature offers another

distribution function known as the total correlation function h(x− x′) [Boubĺık, 1996]

h(x− x′) = g2(x− x′)− 1. (2.31)

Note that h(x − x′) → 0 when the mutual distance of points x and x′ increases infinitely,

which may be of value in certain applications.

Either function can be used to provide the desired statistics of the composite sample.

To employ these functions, however, requires the knowledge of function ρ2 for a given mi-

crostructures which is rather difficult to determine. Fortunately, a suitable substitute is

available through the second order intensity function K(r) defined by [Ripley, 1977]. This

function gives the number of further points expected to lie within a radial distance r of an

arbitrary point divided by the number of particles (fibers) per the unit area and is related

to the radial distribution function by

g2(r) =
1

2πr

dK(r)

dr
. (2.32)

Unlike the generic two-particle probability density function ρ2, the function K(r) can be

easily evaluated. Details are given in Section 2.3.

Finally, we turn our attention to composite media consisting of non-overlapping particles.

The impenetrability condition implies that ρ2(x,x′) is equal to zero for all (x − x′) ∈ Ωd.

It means that each particle center is surrounded by a “secure area” Ωd which cannot be

occupied by another particle center. If we consider a unidirectional fiber composite with

identical circular fibers of radius R, then Ωd is a cylinder with radius 2R centered at x.
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2.2.3 Connection between functions S and ρ for particulate microstructures

To reconcile individual approaches discussed in Sections 2.2.1 and 2.2.2 it is desirable to

establish a connection between functions Sn and ρn. Since function ρn applies only to

particulate composites, we limit our discussion to such a type of systems.

In principle, it suffices to relate the characteristic function χr(x, α) and the probability

density function ψ(x, α). It is easy to notice that for the composite formed by impenetrable

particles the following relation holds [Ponte Casteñada and Willis, 1995]

χf (x, α) =
∫
ψ(y, α)m(x− y)dy, (2.33)

where m(y) is the characteristic function of one inclusion with center at the origin of coor-

dinate system.

Then, substituting Eq. (2.33) into Eq. (2.12) and and making use of Eq. (2.23) gives

Sff (x1,x2) =
∫ ∫

m(x1 − x3)m(x2 − x4)
[∫

ψ(x3, α)ψ(x4, α)p(α)dα
]

dx3dx4

=
∫ ∫

m(x1 − x3)m(x2 − x4) [δ(x3 − x4)ρ1(x3) + ρ2(x3,x4)] dx3dx4.

For statistically homogeneous and ergodic media this expression invites a substitution of

h(x3,x4) for ρ2(x3,x4) to get

Sff (x1 − x2) = ρΩint(x1 − x2) + ρ2Ω2 +

+ ρ2
∫ ∫

h(x3 − x4)m(x1 − x3)m(x2 − x4)dx3dx4, (2.34)

where Ωint(x1 − x2) stands for the intersection volume (area) of two particles with centers

located at points x1 and x2 and Ω is the volume (area) of one particle. Knowing the function

Sff one may use results from Table 2.1 to establish similar relations for all remaining

functions. In particular, the two–point matrix probability function Smm assumes the form

Smm(x1 − x2) = 1− ρΩu(x1 − x2) + ρ2Ω2 +

+ ρ2
∫ ∫

h(x3 − x4)m(x1 − x3)m(x2 − x3)dx3dx4, (2.35)



18

where Ωu(x1 − x2) = 2Ω − Ωint(x1 − x2) is the union volume (area) of two particles with

centers located at points x1 and x2. This relation is equivalent to formulas derived by

[Torquato and Stell, 1985] using a slightly different procedure.

To further simplify Eq. (2.35) we consider a statistically isotropic two-dimensional com-

posite formed by identical circles with radius R. In such a case, the two–point matrix

probability function is provided by

Smm(r12) = 1− ρΩu(r12) + ρ2Ω2 + ρ2
∫ ∫

h(r34)m(r13)m(r23)dx3dx4

= 1− ρΩu(r12) + ρ2Ω2 + ρ2M(r12), (2.36)

where Ω equals to πR2. Functions m(x) and Ωu(x) depend on r = ‖x‖ only and are given

by

m(r) =

 1 r ≤ R

0 otherwise
, (2.37)

Ωu(r) =

 2R2
[
π − arccos(r/2R) + r/2R

√
1− (r/2R)2

]
r < 2R

2πR2 r ≥ 2R
. (2.38)

Evaluation of the last term in Eq. (2.36) creates no obstacles since M(r) is in fact a

double convolution. In such a case the Fourier transform of M is given as a multiplication

of the Fourier transforms of individual functions (see Appendix C)

M̃(t) = h̃(t)m̃(t)m̃(t). (2.39)

After some algebra outlined in Appendix B we arrive at

m̃(t) =
2πR

t
J1(R t) (2.40)

h̃(t) = 2π
∫ ∞

0
h(t)J0(rt) r dr = t

∫ ∞
0

K̃(r)J1(rt)dr, (2.41)

where J0(·) and J1(·) in above equations are the Bessel functions of the first kind, zero and

first order, respectively, and K̃(r) = K(r) − πr2. The inverse Fourier transform is then

written as

M(r) =
1

2π

∫ ∞
0

M̃(t)J0(rt)t dt. (2.42)
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2.3 Numerical evaluation of microstructural statistics

Numerical evaluation of microstructural statistics introduced in the previous sections pro-

ceeds as follows. We begin with the n-point probability functions assuming a statistically

homogeneous and ergodic medium. To that end, two different approaches are examined.

First, a simple simulation technique is proposed. Next, an approach suitable for digitized

media is explored. The determination of the radial distribution function is performed by

deterministic procedure. At present, a statistical isotropy is assumed explicitly.

Precision of individual methods is tested for both theoretical and real microstructures.

In general, a heterogeneous medium formed by N identical circles with radius R and centers

located at positions x1, . . . ,xN embedded in the rectangle with dimensions 〈0;H1〉 × 〈0;H2〉

is considered.

2.3.1 Functions Sn

To determine Sr1,...,rn we recall that the general n-point probability gives the probability of

finding n points x1, . . . ,xn randomly thrown into a medium located in the phases r1, . . . , rn.

Among all functions, the one–point and two–point probability functions deserve a special

attention as they arise in the formulation of macroscopic constitutive equations of random

composites discussed in Chapter 4. In view of Table 2.1 we further consider only the matrix

probability functions.

To follow up the above definition, the one–point matrix probability function Sm gives the

chance of finding a randomly placed point located in the matrix phase. To determine this

quantity, a simple Monte-Carlo like simulation can be utilized – we throw a randomly point

into the microstructure and count successful “hits“ into the matrix phase. Then, the value

of function Sm can be estimated as

Sm ≈
n′

n
, (2.43)

where n′ is the number of successful hits and n denotes the total number of throws. Entirely

similar procedure can be employed to determine values of Smm(x).
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Figure 2.2: Example of sampling template

Smith and Torquato, [Smith and Torquato, 1988], proposed another procedure which

appeals to the determination of Smm(x). Instead of tossing a line corresponding to x into

a medium, sampling template is formed (see Fig. 2.2). The center of such a sampling

template is randomly thrown into a medium and corresponding successful hits are counted.

Furthermore, if the medium under consideration is statistically isotropic, values found for

points located on the same circumference can be averaged as well, which allows large number

of tests to be performed within one placement of the template. Although simple, such

simulations are computationally very intensive.

Another, more attractive approach, is available when the real microstructure is replaced

by its binary image. A binary version of Fig. 2.1(b) is shown in Fig. 2.3. Such a digitized

micrograph can be imagined as a discretization of the characteristic function χr(x, α), usually

presented in terms of a M ×N bitmap. Denoting the value of χr for the pixel located in the

ith row and jth column as a χr(i, j) allows to write the first two moments of function Sn for

an ergodic and statistically homogeneous medium in the form

Sr =
1

MN

M∑
i=1

N∑
j=1

χr(i, j) (2.44)

Srs(m,n) =
1

(im − iM + 1)(jm − jM + 1)

iM∑
i=im

jM∑
j=jm

χr(i, j)χs(i+m, j + n), (2.45)
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Figure 2.3: Idealized binary image of Fig. 2.1(b); resolution 976x716 pixels

where im ≥ (1 − m, 1), iM ≤ (M,M − m). Observe that to compute function Sr requires

O(MN) operations, while O((MN)2) operations are needed for function Srs. This might be

computationally demanding, particularly for a large micrograph, and does not seem to bring

any advantageous over simulation techniques.

The required number of operations, however, can be reduced when writing the two–point

probability function Srs for the periodic ergodic media as a correlation of functions χr and

χs, recall Eq. (2.4),

Srs(x) =
1

Ω

∫
Ω
χr(y)χs(x + y)dy (2.46)

Then, using relation (C.11) the Fourier transform of Srs is provided by

S̃rs(ξ) =
1

Ω
χ̃r(ξ)χ̃s(ξ), (2.47)

where · now stands for the complex conjugate. Taking advantage of the periodicity of function

χr one may implement the Discrete Fourier Transform (DFT) [Burrus and Parks, 1985] when

evaluating Eq. (2.47). To shed a light on this subject we first write the discrete version of

Eq. (2.46) in the form

Srs(m,n) =
1

MN

M∑
i=1

N∑
j=1

χr(i, j)χs((i+m)%(M), (j + n)%N), (2.48)
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Figure 2.4: Correction factor

where symbol “%” stands for modulo. The above equation, usually termed the cyclic cor-

relation, readily implies periodicity of function Srs. Note that the correlation property of

DFT holds for cyclic correlation. Referring to Eq. (2.47) it is given by the following relation

DFT{Srs(m,n)} = DFT{χr(m,n)}DFT{χs(m,n)}. (2.49)

The inverse DFT denoted as IDFT then serves to derive function Srs at the final set of

discrete points as

Srs(m,n) = IDFT{DFT{χr(m,n)}DFT{χs(m,n)}}. (2.50)

This method is very economical and its accuracy depends only on the selected resolution

of digitized media. See also Appendix C for further discussion. Usually, the Fast Fourier

Transform, which needs only O(log(MN)) operations, is called to carry out the numerical

computation.

2.3.2 Functions ρn

Direct evaluation of function ρn for all n is not trivial owing to its definition as the probability

density function. On the contrary, a function given as an integral of ρn (which can be



23

interpreted as a probability function) can be easily determined. The second–order intensity

function K(r) in Eq. (2.32) represents such functions. Following [Axelsen, 1995, Pyrz, 1994],

this function assumes the form

K(r) =
A

N2

N∑
k=1

Ik(r)

wk
, (2.51)

where Ik(r) is the number of points (particle centers) within a circle with radius r centered

at particle k, N is the total number of particles (fibers) in the sample, A is the sample area

and wk stands for correction factor, which takes into account points outside the sampling

area if not included in Ik(r). In principle, wk is a weighting factor given by, Fig. (2.4),

wk =
πr2

A′
. (2.52)

When a periodic microstructure is considered it equals 1.

Eq. (2.51) suggests that evaluation of K for a given r requires to count the number of

points distant by r from all particle centers in the sample. Provided that particle centers

are sorted with respect to one coordinate, this task can be accomplished using a very simple

projection method with computational complexity O(N [log2(N)+k]), where k ≤ N (see e.g.

[Hudec, 1999, Chapter 4]). Evidently, this procedure may perform rather poorly when sam-

ples with a very large number of particles are analyzed. However, in applications considered

herein it proved to be very efficient.

Knowing the function K(r), the radial distribution function g2 follows from Eq. (2.32)

using numerical differentiation. The two–particle probability density function for an isotropic

medium ρ2 is then found from Eq. (2.30). The required statistical isotropy associated with

K(r) presents one of the drawbacks. It therefore desirable to confirm this hypothesis first

prior to selecting this function for the description of a random media.

2.3.3 Microstructural statistics for theoretical models of microstructures

The purpose of this section is to test the proposed evaluation techniques for two simple

examples of statistically isotropic models of the microstructure – the hexagonal arrangement
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Figure 2.5: Unit cell for hexagonal lattice of fibers

of particles and the model of equal-sized fully penetrable cylinders. Selection of these two

microstructures is rather intentional. In fact, the closed form of K(r) is known for both

configurations. Also, the closed form of Smm(r) has been found for the model of fully

penetrable cylinders. Note that both models assume periodic microstructures.

Hexagonal array of cylinders. The hexagonal arrangement of particles in the matrix

is uniquely specified by the periodic unit cell displayed in the Fig. 2.5. The dimensionless

constant ξ is given by

ξ4 =
4

3

π2

c2
f

. (2.53)

A simple geometric consideration reveals that function K(r) will experience jumps cor-

responding to regular spacing of particles denoted by 1r for corner fibers and 2r for central

fibers,

1r2 = ξ2 R2(3i2 + j2), (2.54)

2r2 =
ξ2

4
R2
[
3(2i+ 1)2 + (2j + 1)2

]
, (2.55)

where i, j = 0, . . . ,∞. Since there are exactly six additional fibers found for every fiber at a
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Figure 2.6: Function K(r) for hexagonal packing of fibers

given jump, it follows from Eq. (2.51) that the value of ∆K for every jump reads

∆K =
6π

cf
R2. (2.56)

Caution must be exercised when evaluating the function K(r) for an arbitrary r. In

particular, one should carefully inspect values 1r and 2r to avoid taking one step into con-

sideration twice. The resulting curves for different values of cf appear in Fig. 2.6. The

solid lines correspond to the closed form solution while dots denote discrete values obtained

numerically.

Fully penetrable cylinders This model assumes that positions of particle centers are

totally independent. Thus, the value of ρ2(r) is constant and equal to ρ2. Then, g2(r) = 1

and from Eq. (2.32)

K(r) = πr2. (2.57)

Next, recall that Smm(x,x′) represents the probability of finding two points x and x′

randomly thrown into the medium both in the matrix. For fully penetrable cylinders this

function corresponds to the probability that union of two cylinders with radius R and centers

located in points x and x′ is not occupied by any other particle center. Such an event can be
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described by the Poisson probability distribution (see e.g. [Rektorys, 1995a, p. 662]) with

the intensity ρΩu(x,x
′),

Smm(x,x′) = exp(−ρΩu(x,x
′)). (2.58)

For the statistically isotropic medium, this expression reduces to [Torquato, 1991]

Smm(r) = exp(−ρΩu(r)), (2.59)

where Ωu(r) is the union area of two identical cylinders with radius R and centers separated

by distance r. To arrive at the number of particles ρ per unit area (volume) we combine

Eqs. (2.17) and (2.38) to write the matrix volume fraction in the form

Smm(r = 0) = cm = exp(−ρ πR2) (2.60)

Therefore, for a given cm the above relation readily provides the corresponding value of ρ.

Numerical experiments were performed for twenty different configurations containing

100 particles having a circular radius R. Each configuration was generated purely randomly

keeping the matrix volume fraction cm fixed. The value of Smm was found by placing a

template of Fig. 2.2 randomly into a medium. Each value was averaged over 5,000 throws.

A procedure analogous to the previous subsection was applied to determine the corresponding

values of K. The curves derived from simulations and Eq. (2.57) or (2.59) are displayed

in Fig. 2.7. The solid lines were derived by averaging the resulting values over all twenty

configurations.

To conclude, results displayed in Figs. 2.6–Fig. 2.7 mark the proposed methods as suffi-

ciently accurate to provide reliable values for selected statistical functions.

2.4 Analysis of real microstructure

In this closing section, the preceding procedures are applied to the real microstructure repre-

sented here by the micrograph of Fig. 2.1(b) taken from the bundle of graphite fibers bonded

to the polymer matrix. For numerical analysis, the real microstructure is replaced by its
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Figure 2.7: Microstructural functions for fully penetrable cylinders.

idealized binary image, Fig. 2.3, which offers rather concise yet more useful notion about the

actual arrangement of fibers within a sample.

Before proceeding, the powerful image analyzer LUCIE is called to provide for the basic

geometrical information such as the fiber radius, position of all particles in the sample

and the fiber volume fraction. At present, the periodicity of microstructure is invoked so

the micrograph is assumed to be surrounded by periodic replicas of itself, which indirectly

implies ergodicity and statistical homogeneity of the medium. Therefore, the validity of

these statistical assumptions should be checked first, see Sections 2.4.1–2.4.2. A number of

results derived for the selected statistical descriptors are referenced in Section 2.4.3.

2.4.1 Testing ergodic hypothesis

To test the ergodic hypothesis it is necessary to form the ensemble space S. When sampling

individual members of S we started from three micrographs of the fiber tow taken from

three specimens at approximately the same location. Each member of the ensemble was

then found through a random cut of a part of a given micrograph subjected to condition of

the “same” fiber volume fraction. This condition actually supplements the lack of infinity of
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Figure 2.8: Selected members of the sample space
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our composite medium. Fig. 2.8 shows six such individuals generated from the micrograph

displayed in Fig. 2.3. In view of the above comments we shall only require that

cr =
1

n

n∑
i=1

Sir, r = f,m , (2.61)

where n is the number of members in the ensemble. Functions Sir can be derived by randomly

placing a point in the member i in a certain number of times while counting the number

of hits in the phase r and then dividing by the total number of throws. When setting the

number of throws equal to 500 we found Sf = 0.42, which agrees well with the average fiber

volume fraction cf = 0.435. A better agreement can be expected for larger n. Although

an ultimate justification of an ergodic assumption would require to prove equality of higher

moments as well, we argue that the presented results are sufficient for the medium to be

considered as ergodic, providing the medium is indeed statistically homogeneous. In the

sense of an ergodic assumption we suggest that a single micrograph can be used hereafter

for evaluation of the required statistical descriptors.

2.4.2 Test of statistical isotropy

To check the statistical isotropy of the medium under consideration we plot the distribution

of the two-point matrix probability function Smm for a statistically uniform medium as a

function of coordinates of points x and x′, Fig. 2.9(a). These results were derived after

100,000 random throws of the sampling template from Fig. 2.2. Should the material be

statistically isotropic (independent of orientation) the variation coefficient v(φ) of Smm(φ)|r/R
for a given ratio r/R would be equal to zero. Nevertheless, to facilitate the micromechanics

analysis addressed in Chapter 3 the material will be treated as statistically isotropic, and

the maximum 5% variation evident from Fig. 2.9(b) is taken as an acceptable error of the

assumption.
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Figure 2.9: Two-point matrix probability function Smm(x−x
′
) and variation coefficient v(φ)

of Smm(r, φ) plotted as a function of r/R.

2.4.3 Microstructure describing functions

After verifying the statistical assumptions at least to some extent, we may proceed to deter-

mine all the microstructure describing functions for the current microstructure.

The two-point probability functions. Apart from Fig. 2.9(a), numerical results are

presented only for the ergodic and isotropic medium. Fig. 2.10(a) illustrates the variation

of Smm as a function of the number of random throws of the sampling template. It is

evident that for the present microstructure 5,000 repetitions are sufficient. Fig 2.10(b)

further shows certain unique relationships pertaining to the isotropic and ergodic medium

(recall Table 2.1). Clearly, Eq. (2.17) reduces to Srs(0) = δrscr while Eq. (2.18) becomes

lim‖x−x′‖→∞ Srs(x,x
′) = crcs. The former relation simply manifests the ergodic hypothesis.

Its justification for the present material system is supported by results plotted in Fig 2.10(b).

Note that in this particular case the fiber volume fraction was found to be equal to 0.44.

The latter one roughly states that two space points x and x
′

spread far apart (r = 10R,

Fig. 2.10(b)) are statistically independent. The remaining theoretical relations listed in
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Figure 2.10: Two-point matrix probability Smm(r) and unique relations for the general two-

point probability function Srs(r).

Table 2.1 agree well with the numerical predictions, which further confirms justly used

assumptions regarding the statistical isotropy and ergodicity for the present system. Methods

arising from the analysis of digitized media offer another, computationally more attractive

way to evaluate the desired statistics. They either use a discrete counterpart to integral

expressions (2.11)–(2.12) (recall Eqs. (2.45), (2.48)) which requires only point by point

integration. Or, when an ergodic assumption applies, an integral formula given in form

of correlation, Eq. (2.46), can be exploit. In view of Section 2.3.1, this approach employs

the Fast Fourier Transform (FFT) to evaluate Eq. (2.49). Inverse FFT is then applied to

solve Eq. (2.50). Operations based on the FFT are usually build on various public-domain

packages optimized for a given computer. These definite advantages make this particular

approach rather appealing, see also Table 2.2. The final comment reconciles the true behavior

of function Srs and its periodic character which arises from Eq. (2.50). Recall that with

r −→ ∞ Srs −→ crcs, Eq. (2.18). Therefore, the sample size should be sufficiently large to

comply with this property. As illustrated in Fig. 2.12(b) this requirement is certainly fulfilled

for the present samples shown in Figs. 2.3 and 2.11. Fig. 2.12(a) illustrates a variation of

the two–point matrix probability function Smm(r) derived in turn from Eqs. (2.45), (2.48),
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Figure 2.11: Idealized binary images of Fig. 2.1(b); (a)–resolution 488x358 pixels, (b)–

resolution 244x179 pixels.

Table 2.2: CPU time in seconds required to evaluate function Smm

Method Bitmap resolution

976 × 716 488 × 358 244 × 179

Direct with periodicity × 9095.27 446.03

Direct without periodicity × 5200.07 238.62

FFT based 6.24 1.54 0.37

(2.50) assuming the bitmap of Fig. 2.3. While the curves derived from Eqs. (2.48) and

(2.50), which presume periodic microstructures, are in perfect match, results from Eq. (2.45)

deviate. It is clear that a higher resolution of a digitized medium inevitably increases the

required computational time. Table 2.2. indicates that lowering the degree of resolution

provides a noticeable improvement in terms of the computational efficiency. Encouraging

results are plotted in Fig. 2.12(b) suggesting that even at low resolutions a reasonable match

with the “exact” solution (the highest possible resolution) can be anticipated. Note that

all results were initially derived for a statistically homogeneous ergodic medium. To make

them comparable with former predictions, a sampling template was used again to average
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Figure 2.12: Two-point matrix probability Smm(r) derived for a digitized medium.

values for a given radius, thus arriving at a statistically isotropic medium. As evident from

Fig. 2.12(b), both approaches provide identical results. Similar conclusions can be drawn

for a statistically homogeneous medium by inspecting Fig. 2.13, which shows distributions

of variation coefficient v(φ) as a function of r/R for selected binary images of the present

composite system (see Figs. 2.3 and 2.11).
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Figure 2.13: Distributions of variation coefficient v(φ) of Smm(r, φ) for several digitized media
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The two-particle probability density based functions. First, we turn our attention

to the second order intensity function K(r). Recall that the number of repetitions needed

for its evaluation now corresponds to the number of fibers within the sampling area, since

the center of the sampling template to count the number of points for a given radius r is

now placed in turn into centers of individual fibers only. Its determination is thus simple

and for the moderate number of particles in a sample very efficient.
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Figure 2.14: Second order intensity function K(r) and radial distribution function g2(r)

Evaluation of K for both the stand-alone micrograph and the periodic one are examined.

The resulting curves appear in Fig. 2.14(a). Deviation of both curves suggests that the

results obtained using the correction factor are partially biased, especially for larger values of

r. Even more severe difference is expected for micrographs with smaller number of particles.

To complete our exposition to the selected set of statistical descriptors we show a variation

of the pair distribution function g2(r) obtained by the numerical differentiation of the second

order intensity function K(r) employing the central difference formula. Individual curves

on Fig. 2.14(b) correspond to various step sizes used when solving Eq. (2.32). Fig. 2.14(b)

indicates two major flaws associated with Eq. (2.32). First, the value of g2(r) is strongly

dependent on the selected step size. A rather small step size is required to capture accu-

rately the critical region. In contradiction, reducing the step size ∆r results in substantial
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oscillation of this function. In addition, the amplitude of these oscillations does not become

negligible even for large r.
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Figure 2.15: The two-point matrix probability function

To conclude, we inspect the unique connection (2.36) between Smm and functions K(r)

and g2(r) for the isotropic and ergodic medium. Integrals (2.41, 2.42) are evaluated nu-

merically using adaptive Simpson’s integration scheme (see [Burden and Faires, 1989]) with

the prescribed tolerance 10−4. Fig. 2.15 shows the variation of function Smm derived from

various approaches. Coincidence of individual curves is evident. Note that procedure which

requires solution of (2.36) for a given distribution of K(r) is considerably more efficient then

the one based on simulations, and therefore preferable.



Chapter 3

LOCAL AND OVERALL RESPONSE OF RANDOM

COMPOSITES VIA PERIODIC FIELDS

The purpose of this chapter is to introduce a simple micromechanics based approach to

the analysis of random composites. Owing to the complexity of the microstructure, recall

Fig. 1.2, the analysis is usually left to rely on incomplete geometrical information about the

composite microstructure. The problem is not successfully resolved even when considering

a large sample of composite as such displayed in Fig. 1.1. Instead, it appears preferable to

exploit various statistical descriptors discussed in detail in Chapter 2.

An essential ingredient of the present model applicable in both the elastic and inelastic

regimes is a carefully selected material representative volume element (RVE) replacing the

real microstructure. Such a RVE is represented here by a periodic unit cell (PUC) consisting

of a small number of particles, which statistically resembles the actual composite. For an

early study on this subject we refer the reader to [Povirk, 1995]. A definite choice of the

number of particles within a unit cell depends on a given problem one wish to analyze.

A number of ways can be used to accomplish this task. Here, we offer a simple approach

based on the microstructural statistics. In particular, the PUC is found from a certain

optimization procedure. A random character of the microstructure is accounted for through

the two-point probability and the second order intensity functions (Section 2.3) introduced

into an objective function. The procedure is outlined in Section 3.1. Results are presented

for the graphite-fiber tow impregnated by the polymer matrix.

A number of theoretical problems, generally beneficial to the designer, are selected to test

applicability of the present approach. Section 3.2 is concerned with numerical evaluation of
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effective mechanical properties of composites with periodic microstructures. Contribution

due to local eigenstrains to overall response is studied in Section 3.3. Here we admit only

thermal changes and viscoelastic deformations. Extension to other deformation modes is

straightforward. The interested reader may consult the work by [Michel et al., 1999] for

details on this subject.

3.1 Construction of the periodic unit cell

In this section we are concerned with one of the major goals of this work: determination

of the periodic unit cell, which is statistically equivalent to the original microstructure. In

achieving this, the knowledge about material’s statistics acquired in Chapter 2 is used. In

particular, the PUC is constructed by matching a selected microstructure describing function

of the real microstructure and the unit cell. To that end, an optimization procedure based on

the method of least squares is implemented. The optimization problem then reduces to the

minimization of an objective function involving the selected statistical descriptor. Although

the required statistical information can be provided by any function presented in previous

sections, the proper choice of a statistical descriptor may result in significant improvement

of the optimization process.

The process of finding the minimum value of the objective function is divided into two

steps: finding the optimal positions of fibers for fixed dimension of the unit cell and then

generating the optimal dimensions of the unit cell. While the second step of this procedure

represents an elementary one-dimensional minimization problem, the solution of the first

problem requires the minimization of a multi-dimensional, multi-modal function with a large

number of local minima. A variety of stochastic algorithms is described in Section 3.1.2.

Section 3.1.4 offers some additional improvements to optimization algorithms. Resulting

unit cells are introduced in Section 3.1.5.
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Figure 3.1: Geometry of the periodic unit cell

3.1.1 Objective function and problem definition

Consider a periodic unit cell consisting of N particles displayed in Fig. 3.1. The geometry

of such a unit cell is determined by dimensions H1 and H2 and the x and y coordinates of

all particle centers. The objective is to keep material’s statistics of both the PUC and the

actual composite as much similar as possible. At present, the particle locations together with

an optimal ratio of cell dimensions H1/H2 are found by minimizing an objective function

involving the second order intensity function K(r)

F (xN , H1, H2) =
Nm∑
i=1

(
K0(ri)−K(ri)

πr2
i

)2

, (3.1)

where xN = {x1, y1, . . . , xN , yN} stores the positions of particle centers of the periodic unit

cell, xi and yi correspond to the x and y coordinates of the i-th particle, H1 and H2 are

the dimensions of the unit cell, K0(ri) is the value of K corresponding to the original media

evaluated at the position ri and Nm is the number of points, in which both functions are

evaluated.

The choice of function K(r) for the optimization problem is primarily attributed to its

simplicity and a very rapid evaluation for a reasonable number of particlesN . In addition, the
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selected form of the objective function F , Eq. (3.1), serves directly as a “natural” penalization

when particles happen to overlap. Therefore, no additional algorithmic labor necessary

for avoiding unacceptable solutions [Povirk, 1995] is needed if the material is formed by

impenetrable particles.

The minimization of objective function (3.1) is performed in two steps, where each step

corresponds to a single optimization problem. It proved advantageous to start from an

optimal spatial distribution of particle centers for a given set of cell dimensions. The desired

ratio of cell dimensions then follows from a separate optimization problem. Hence, the

following optimization problem is solved first

Optimal fiber configuration. For a given number of fibersN , dimensions of a unit cell

H1 andH2 and values of the original functionK0(r) evaluated at points ri, i = 1, . . . , Nm

find the configuration of particle centers xN(H1, H2) such that:

(P1)xN(H1, H2) = arg min
xN∈S

F (xN , H1, H2),

where S denotes a set of admissible vectors xN .

Several alternatives are acceptable to define a set S of admissible solutions. When study-

ing periodic microstructures the components of vector xN can take arbitrary values so the

problem is treated as an unconstrained one. If desirable one may avoid the presence of two

materials at the boundary by restricting the positions of fibers such that the components of

vector x satisfy the following condition

0 ≤ xi ≤ H1, 0 ≤ yi ≤ H2, i = 1, . . . , N. (3.2)

The minimization problem then becomes bound-constrained. Finally, as discussed in Sec-

tion 3.1.3 the impenetrability condition can be imposed. With some additional tricks this

substantially improves performance of the optimization procedure.
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After solving the above problem, we are left with only two unknown parameters, H1

and H2, to be determined. Maintaining the same fiber volume fraction cf for both the

periodic unit cell and original microstructure imposes an additional constraint on a set of

unit cell dimensions. The second optimization problem thus reduces to the minimization of

the objective function (3.1) with respect to the ratio η = H1/H2

Optimal ratio H1/H2 . For known values of xN(η) and for the fixed volume fraction

of phases, find the ratio ηN such that:

(P2)ηN = arg min
η∈〈ηa;ηb〉

F (xN(η)),

where values ηa and ηb should be chosen to cover all the reasonable dimensions of the

unit cell.

The solution of problem (P2) can be obtained through the Golden Section search method

[Press et al., 1992, Chapter 10.1]. In a nutshell, starting from an initial triplet of points

a, b, c this method is based on generating a new point in locations, which divide intervals

〈a; b〉 or 〈b; c〉 in some prescribed ratio – Golden section. The new point then replaces one of

the points a, b, c according to its function value and position. The essentials of this method

are summarized in Algorithm 3.1.

For all computations performed herein, the parameters ηa and ηb were set to 1.0 and

2.0, respectively. To check the solution admissibility we recall the properties of function

K(r) evaluated for the hexagonal packing of fibers. The results presented in Section 2.3.3

imply that every regularity of microstructure generates a jump of function K(r) with the

amplitude corresponding to the number of fibers located at the same distance from a given

particle. Therefore, for the side ratio η = 1.0 as well as for η = 2.0 and e.g. for values of

r = iH1, i = 1, . . . ,∞, four other fibers are always found, while this situation does not occur

for the intermediate values of η. Since function K(r) relevant to the original microstructure

does not experience such jumps (see Fig. 2.14) the value of function F for η ∈ (1; 2) should

be always less than for the interval endpoints.
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1 supply values a < b < c such that f(a) > f(b) ∧ f(c) > f(b)

2 while((c− a) < ε) {

3 ddetermine new point d

4 if (f(d) < f(b))

5 b = d, update a, c with respect to step 1

6 else

7 if(d < b) a = d

8 else c = d

9 }

Algorithm 3.1: Golden Section search

Step 1 The initial points a and b corresponds in the present context to values ηa and ηb

in (P2) and the function value f(·) represents here the minimum value of function F

found for the optimization problem (P1) for a given side ratio.

Step 3 The new point is located in the larger of two intervals 〈a; b〉 and 〈b; c〉, its distance

from the point b is (3−
√

5)/2 times the length of a larger interval.

While solving the above problem is relatively simple, the solution to the first problem

(P1) requires to locate the global minimum of multi-dimesional function, which is far from

clean but rather rugged with a large number of plateaus and local minima. To manifest the

problem complexity, an admissible unit cell consisting of 10 fibers together with an example

of the objective function F is shown in Fig. 3.2. Coordinates x1 and y1 in Fig. 3.2(b)

represent locations of the filled fiber center. Positions of remaining fibers are fixed. The

minimum of function F for the present configuration is marked by a hollow circle. As
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Figure 3.2: An admissible unit cell

suggested in [Matouš et al., 2000] and [Lepš and Šejnoha, 2000] an optimization problem of

this kind can be tackled very efficiently with the help of problem solving systems based on

principles of evolution such as genetic algorithms or simulated annealing methods. A list

of efficient algorithms collectively called the stochastic optimization methods is given in the

next section.

3.1.2 Stochastic optimization methods

A variety of genetic algorithms based Evolution programs has been developed in the last

few decades. For thorough discussion on this subject we refer the interested reader to

[Goldberg, 1989], [Michalewicz, 1992], [Beasley et al., 1993] and [Kvasnička, 1994], among

others. Here, we do not attempt to provide any major break-through in evolutionary pro-

gramming but rather effectively exploit up to date knowledge to attain the goal we set.

Principle of genetic algorithms

Genetic algorithms (GAs) are formulated using a direct analogy with evolution processes

observed in nature, a source of fundamental difference between traditional optimizers and

GAs. In contrast to traditional methods, genetic algorithms work simultaneously with a

population of individuals, exploring a number of new areas in the search space in parallel,
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thus reducing a probability of being trapped in a local minimum. As in nature, individuals in

a population compete with each other for surviving, so that fitter individuals tend to progress

into new generations, while the poor ones usually die out. This process is briefly described in

Algorithm 3.2. Algorithm 3.2 provides basic steps of a single GA cycle; reproduction phase

1 t = 0

2 generate P0, evaluate P0

3 while (not termination-condition) {

4 t = t+ 1

5 select Mt from Pt−1 (apply sampling mechanism)

6 alter Mt (apply genetic operators)

7 create Pt from Mt and evaluate Pt (insert new individuals into Pt)

8 }

Algorithm 3.2: Principle of the genetic algorithm

(step 5), recombination (step 6), and selection of a new population (step 7). In paragraphs

to follow, we first explore mechanisms guiding selections of new individuals, which undergo

genetic process (step 5), and then proceed with basic operators controling the step 6. Steps

5 and 7 will be explained in more details when formulating various algorithms we tested.

Sampling mechanisms

Sampling mechanism facilitates the reproduction step of the GA (step 5 in Algorithm 3.2).

In principle, individuals selected for reproduction are copied to the “mating” pool according

to their relative performance reffered to as their “fitness”, or “figure of merit”. In case of

function optimization, it simply equals the function value or rather its inverse when solving

minimization problem. An expected number of copies each individual should receive in the
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mating pool Mt is given by

ei =
si∑P
j=1 sj

M, si =
1

δ + fi
, fi ≥ 0 (3.3)

where P is the number of individuals in the population, M is the number of individuals in

a mating pool Mt, and fi is the function value associated with the i-th individual; si = fi

when solving maximization problem. Parameter δ is a small positive number which prevents

division by zero. This procedure is called sampling mechanism. The most popular ones are

reviewed in the sequel.

Fitness scaling. Usually it is not desirable to sample individuals according to their raw

fitness. In such a case the best individuals may receive a large number of copies in a

single generation. In other words, increasing the selection pressure decreases the population

diversity. To compress the range of fitness a linear scaling (shifting) of the fitness function

is incorporated into sampling procedures [Goldberg, 1989]. Then, the relation between the

raw fitness s and the scaled fitness s′ is simply s′ = as + b. To determine constants a and

b we require the average raw fitness savg and scaled fitness s′avg to be the same. The second

condition is then provided by setting the value of maximal scaled fitness to s′max = Cmults
′
avg,

where Cmult ∈ 〈1.2; 2〉.

Roulette wheel selection. The method starts by setting the probability of selecting i-

th individual to pi = s′i/
∑P
j=1 s

′
j. Next, a real number p with uniform distribution on the

interval 〈0; 1〉 is generated and then the first individual with its cumulative probability
∑j
i=1 pi

exceeding p is inserted into the mating pool. This procedure is repeated until the mating

pool is full. More details can be found in [Goldberg, 1989, Kvasnička, 1993].

Note that this procedure is often described with analogy to a single spin of a roulette

wheel with one marker, where parts of the wheel corresponding to individual members are

allocated with respect to the value pi.
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Stochastic universal sampling (SUS). Stochastic universal sampling is a generalization

of previous selection method proposed by Baker in [Baker, 1987]. The standard roulette

wheel is marked with equally spaced pointers indicating the happy individual selected for

reproduction. A number of pointers indicates a number of desired individuals used for

reproduction, which are again obtained by the single spin of a roulette wheel.

Remainder Stochastic Independent Sampling (RSIS). [Baker, 1987] This method

allocates individuals according to the integer part of their ei. The remaining places in a

population are then sampled according to their fractional part representing here the proba-

bility of selection. In particular, the fractional part of each individual is checked against a

real number r uniformly distributed over the 〈0; 1〉. If greater, the individual is added to the

mating pool and its fractional part is set equal to zero. If not, move to the next individual.

These steps are repeated until the number of individuals in the mating pool equals M .

To make our exposition complete we briefly mention two selection methods which are not

based on the expected number of copies in mating pool each individuals should receive. The

main advantage of this approach is that it principally prevents the best individuals from

causing the premature convergence of the whole population.

Tournament selection. Whenever an individual is to be selected to the mating pool,

two individuals are picked randomly from the original generation. Then the individual with

higher fitness is copied into the mating pool. This procedure is repeated until the mating

pool is full. More details about this procedure can be found in [Beasley et al., 1993].

Normalized geometric ranking. In this method, the probability of individual’s selection

is based on its rank or position in the population rather than on the value of fitness. As

described in [Houck et al., 1995], probabilities are assigned to each individual exponentially

and are normalized to provide the cumulative probability of selection equal to 1. Thus, the
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probability of selection of i-th individual is

pi = q′(1− q)r−1,

where q is the probability of selecting the best individual in the population , r is the rank

of i-th individual with respect to its raw fitness, and q′ = q/(1− (1− q)P ).

Although a proper selection scheme may quite significantly influence an ultimate perfor-

mance of the GA, there is no firm evidence proving the superiority of one particular sampling

method over the others.

Genetic operators

Breeding is the essential force driving evolution of each species. Mating process, in which

two parents combine their good characteristics to produce a better offspring, is accomplished

in GAs through various “cross-breeding” and “mutating” operators referred to as genetic

operators. These operators work on a set of solution vectors xN transformed into a sequence

of genetic information - chromosome. Individual variables are then termed genes. This

framework is usually introduced to distinguish between the search and representation spaces.

In its classical version [Goldberg, 1989], the genetic algorithm was limited exclusively to

binary representation of chromosomes with only two basic operators, single-point crossover

and mutation, being used. The binary representation of searched variables , however, suffers

from various drawbacks such as a precision limitation. For example, coding a high-precision

real number may lead to binary strings of size which essentially prevents the GA from

successful implementation. This problem becomes particularly important when the search

space is formed by high-precision continuous parameters, since a high-precision requirement

usually implies a very large representation space. In such a case the binary genetic algorithm

performs rather poorly.

To avoid this shortcoming we turn our attention to a floating-point representation of genes

[Michalewicz, 1992]. This step brings a number of advantages. First of all, using real numbers

easily allows representation to the machine precision. In addition, the search operators work
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directly in the search domain thus no mapping between the representation space and the

search space is required. This is a direct consequence of the floating point implementation,

where each chromosome vector is coded as a vector of floating point numbers, of the same

length as the solution vector. Particularly, each individual – a configuration of particles in

the unit cell – is represented by a real-valued chromosome X = {x1, . . . , x2N}. Individual

components of this vector are related to the actual fiber centers as follows

x2i−1 = xi and x2i = yi for i = 1, . . . , N,

whereN is the number of fibers within the unit cell, xi and yi represent the x and y coordinate

of i-th particle.

Moreover, different representation of genes calls for the suitable choice of genetic op-

erators. Michalewicz in [Michalewicz, 1992, Michalewicz et al., 1994] proposed a group of

real-valued genetic operators which are formulated for the convex search space S, so they

can be directly used for the solution of considered problem. The description of these opera-

tors follows.

Let Li and Ui represent the lower and upper bound for each variable xi, respectively.

Further assume that vector X represents a parent, whereas vector X′ corresponds to an

offspring; u(a, b) is a real number and u[a, b] is an integer number with uniform distribution

defined on a closed interval 〈a; b〉. The following operators can be now defined:

Uniform mutation: Let j = u[1, 2N ] and set:

x′i =

 u(Li, Ui), if i = j

xi, otherwise

Boundary mutation: Let j = u[1, 2N ], p = u(0, 1) and set:

x′i =


Li, if i = j, p < .5

Ui, if i = j, p ≥ .5

xi, otherwise
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Non-uniform mutation: Let j = u[1, 2N ], p = u(0, 1) and set:

x′i =


xi + (Li − xi)f(t), if i = j, p < .5

xi + (Ui − xi)f(t), if i = j, p ≥ .5

xi, otherwise

where f(t) = u(0, 1)(1 − t/tmax)
b, t is the current generation, tmax is the maximum

number of generations and b is the shape parameter. This operator allows for a local

tuning as it searches the space uniformly initially and very locally at later stages.

Multi-non-uniform mutation: Non-uniform mutation applied to all variables of X.

Simple crossover: Let j = [1, 2N ] and set:

x′i =

 xi, if i < j

yi, otherwise

y′i =

 yi, if i < j

xi, otherwise

Simple arithmetic crossover: Let j = u[1, 2N ], p = u(0, 1) and set:

x′i =

 pxi + (1− p)yi, if i = j

xi, otherwise

y′i =

 pyi + (1− p)xi, if i = j

yi, otherwise

Whole arithmetic crossover: Simple arithmetic crossover applied to all variables of X.

Heuristic crossover: Let p = u(0, 1) and set:

X′ = (1 + p)X− pY
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Y′ = X

where X is better individual than Y in terms of fitness. If X′ 6∈ S, then a new random

number p is generated until the feasibility condition (X′ ∈ S) is met or the maximum

allowed number of heuristic crossover applications is exceeded.

Now when the principal steps of genetic algorithms are introduced we proceed with several

specific examples of genetic algorithms. We describe them in turn by referencing individual

steps of Algorithm 3.2.

Genetic algorithm I (GA I)

We begin with the most simple one usually termed as Steady State GAs. Reproduction is

implemented through the weighted roulette wheel and only one or two offspring are created

within each generation. For better understanding we now review the relevant steps:

Step 5 By spinning the roulette wheel select the r individuals from population Pt−1 required

for mating (one individual for mutation, two individuals when the crossover operator

is applied). These individuals are temporarily stored in the mating pool Mt. Linear

scaling is used to reduce a common threat of premature convergence to a local optimum.

Step 6 Altering Mt by applying either crossover or mutation operators. In our case, the

mutation operators are used twice as often as the crossover operators.

Step 7 Based on a number of new offspring created select a corresponding number of in-

dividuals from Pt−1 to die using the inverse roulette wheel. Insert new offspring into

Pt−1 to create Pt.

Genetic algorithm II (GA II)

This algorithm closely resembles the simple genetic algorithm described in [Goldberg, 1989]

with only minor changes. To reduce statistical errors associated with the roulette wheel
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selection the Remainder Stochastic Independent Sampling procedure is employed in this case.

As for GA I we now review the important steps of Algorithm 3.2:

Step 5 By applying the RSIS sample individuals from Pt−1 and copy them into the mating

pool Mt. Note that precisely P individuals are selected for reproduction. This sampling

method thus falls into category of preservative and generational selections according

to the classification of [Michalewicz, 1992]. Similar actions as in GAR I are taken to

deal with the premature convergence.

Step 6 Genetic operators are applied to all individuals in Mt. Each operator is used in a

prescribed number of times depending on the population size, and new individuals are

placed into a temporary population P ′t . Parents for breeding are selected uniformly.

Step 7 Create a new population Pt by successively replacing the worst individual from Pt−1

by individuals from the temporary population P ′t .

Genetic algorithm III (GA III)

This algorithm is essentially a replica of the Michalewicz modGA algorithm presented in

[Michalewicz, 1992, p. 59]. It employs the stochastic universal sampling mechanism since

it allows selection of arbitrary number of individuals to the mating pool by a single wheel

spinning. This is particularly appreciable when applying the modGA, which is characterized

by following steps:

Step 5a Using the SUS select a subset of n individuals from Pt−1 for reproduction and copy

them to Mt. Note that each member of Mt can appear only once in the reproduction

cycle.

Step 5b Again using the SUS select exactly P − n individuals from Pt−1 and copy them

to a new population Pt.
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Step 6 Select uniformly parents from Mt to produce exactly n offsprings (as in GAR II,

but in this case the genetic operators act only on n individuals stored in the mating

pool).

Step 7 Add new offsprings to population Pt.

Hybrid genetic algorithm (HGA)

GAs are generally very efficient in finding promising areas of the searched solution. On

the other hand, they may perform rather poorly when shooting for the exact solution with

a high degree of precision (premature convergence, convergence to a local minimum, etc.).

Therefore it appears logical to combine GAs exploring the search space initially with a

deterministic optimizer exploiting promising solutions locally.

As is natural for GAs, this procedure can be implemented in a number of ways. When

experimenting with this approach, various ideas suggested up to date were combined, which

eventually led to a reliable and efficient algorithm. It works with relatively small population

sizes, which makes computationally feasible to restart the genetic algorithm after a given

convergence criterion is met. Each restart is associated with a certain number of new mem-

bers entering the initial population to maintain a sufficient diversity among chromosomes.

Consequently, mutation operators can be excluded from reproduction. Individual steps of

this algorithm are now discussed in a sequel:

Step 2 Randomly generate a small population.

Steps 5&6 Perform standard genetic operations until convergence or the maximum number

of generations exceeded. To select chromosomes for reproduction stochastic tournament

selection scheme is applied. Only crossover operators are used.

Step 7a Select n best individuals for local search. We adopt the Dynamic Hill Climbing

method of Yuret [Yuret, 1994] to seek for the desired optimum with a starting point

provided by the GA. When the local optimizer converges copy new individuals into Pt.
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Step 7b Add P − n randomly generated individuals to fill population Pt. This ensures

diversity among chromosomes. Goto step 5 and restart the GA.

1 T = Tmax, t = 0

2 generate P0, evaluate P0

3 while (not termination-condition) {

4 counter = success = 0

5 while( counter < countermax ∧ success < successmax) {

6 counter = counter + 1, t = t+ 1

7 select operator O

8 select individual(s) It from Pt

9 modify It by O

10 select individual(s) I ′t from Pt

11 p = exp ((F (I ′t)− F (It))/T )

12 if (u(0, 1) ≤ p) {

13 success = success+ 1

14 insert It into Pt instead of parents

15 evaluate Pt

16 }

17 }

18 decrease T

19 }

Algorithm 3.3: Augmented Simulated Annealing
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Augmented simulated annealing (AUSA)

When talking about stochastic optimization algorithms, it would be unfair not to mention

another popular method using random choice to explore the solution space, namely the

Augmented simulated annealing method presented by [Mahfoud and Goldberg, 1992]. This

method effectively exploits the essentials of GAs (a population of chromosomes, rather than

a single point in space, is optimized) together with the basic concept of simulated annealing

method guiding the search towards minimum energy states.

If we wish to put GAs and the AUSA on the same footing, we may relate the AUSA to a

group of Steady state and On the fly methods [Michalewicz, 1992], in which offspring replace

their parents immediately. The replacement procedure is controlled by the Metropolis crite-

rion, which allows a worse child to replace its better parent with only a certain probability.

The probability of accepting a worse solution is reduced as the procedure converges to the

“global” minimum. For proper implementation of the AUSA refer to Algorithm 3.3.

Step 7 It is recommended to choose mutation operators with much higher probabilities

than crossovers. In [Kvasnička, 1993] ratio ≈ 0.1 is proposed.

Step 8 New individuals are selected using the normalized geometric ranking method.

Step 11 The temperature Tmax should be chosen such that the ratio of accepted solutions

to all solutions is ≈ 50%.

Step 18 This step is called the cooling schedule. We use a very simple form of cooling

schedule Ti+1 = TmultTi. In this step we also perform reannealing if necessary. If the

actual temperature is lower than a given parameter Tmin, we set T = Tmax and copy

a half of the current population to a new one. Remaining part of a new population is

generated randomly.
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Diversity of population

As is evident from Fig. 3.2(b), the objective function possesses a large number of plateaus.

Thus a part of population inevitably lands on one of theses plateaus if no action is taken.

This, however, substantially decreases performance of the genetic algorithm.

To overcome this obstacle we introduce a very simple procedure for maintaining a suffi-

cient diversity in population: Before inserting an offspring X into population, we first search

for an individual X 0 which satisfies

F (X) = F (X 0) max
i
|xi − x′i| < ε, i = 1, . . . , 2N,

where ε is set here to 1×10−5. If such an individual exists, it is replaced by X. Otherwise an

individual X enters a population following the step 7 in above algorithms. This procedure,

though very simple and “naive”, yields substantial improvement in stability of all previously

mentioned methods.

3.1.3 Test example

To test individual methods we assumed a square periodic unit cell consisting of 10 fibers

with the same volume fraction as the real specimen. As a first step we wished to fit functions

K0(r) and K(r) in five points only (Nm = 5). Sampled points were spaced by fiber diameter.

In all cases the initial population was generated purely randomly. Except for the HGA

we created a population of size equal to 64 chromosomes. Only 8 individuals were generated

to fill a population when running the HGA. Iteration process was terminated, if one of the

following conditions was met:

• Algorithm returned value F (x) ≤ ε = 6× 10−5.

• Number of function evaluations exceeded 250,000.

Each algorithm was running twenty times. For each run the number of function evaluations

was recorded together with the minimum attained value of the objective function (3.1).
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Table 3.1: Number of function evaluations

Algorithm Number of evaluations

Min Avg Max

GA I 8,896 74,562 193,600

GA II 6,956 17,270 55,296

GA III 4,484 12,037 26,224

HGA 1,613 8,856 24,404

AUSA 3,490 8,709 26,314

Table 3.2: Characteristics of the best individual

Algorithm Number Returned value ×105

found Min Avg Max

GA I 18/20 6.0 7.2 16.4

GA II 20/20 5.9 6.0 6.0

GA III 20/20 5.9 6.0 6.0

HGA 20/20 5.9 6.0 6.0

AUSA 20/20 5.9 6.0 6.0
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Figure 3.3: Periodic unit cells with corresponding second order intensity functions

Results and conclusions. Table 3.1 shows the minimum, maximum, and average values

for the number of function evaluations. Table 3.2 lists similar results for the best chromosome

in a population. In this case, however, we also included runs terminated after exceeding the

maximum number of function evaluations. Presented results provide no evidence for promot-

ing one particular method and discriminate the others, although nobody is perhaps caught

by surprise seeing the HGA as the current winner and the GAR I, which did not always

converged, as a looser. On the other hand, since all properties affecting the searching process

(population size, initial parameter settings relevant to individual methods, age and optimiza-

tion process dependent probabilities guiding an application of a given genetic operator) are

hand tuned only, the efficiency of algorithms can be underestimated.

To check quality of the resultant unit cell we plotted the second order intensity function

for original microstructure (K0(r)) against the one associated with a unit cell chosen as

the minimum from twenty independent runs. Results, derived via the AUSA method are

plotted in Fig. 3.3(b). Evidently, both functions agree well at sampled points. Unfortunately,

a significant deviation is distinct in all other points. To improve coincidence of both functions

the number of sampled points was increased to 10 (Nm = 10) and the solutions obtained for

Nm = 5 were used as initial guesses. In this way, a much better agreement was attained, see

Fig. 3.3(b). Fig. 3.3(a) shows how the unit cell evolved when increasing an accuracy of our
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solution. It is interesting to note that when running for example the AUSA for Nm = 10

from the beginning, we arrived at the minimum equal to 1.63 × 10−4 after approximately

173,000 function evaluations. However, when starting from Nm = 5 and then continuing

with Nm = 10 we received the desired minimum after 115,000 function evaluations only.

This just confirms similar conclusions drawn from experiments with complicated functions.

3.1.4 Some additional improvements

Improving the performance of genetic algorithms by putting in use the knowledge of the

problem nature is essential for successful implementation of evolution programs. A proper

selection of data coding, as discussed earlier, is just one example. Other features such as

the adaptive operator probabilities or the problem-dependent operators are worthwhile to

consider. Their impact on the present problem is inspected in subsequent paragraphs.

Adaptive operator probabilities

One of the most difficult problems faced when using a stochastic algorithm is a proper tuning

of its parameters. In addition, as suggested by [Davis, 1989] and [Michalewicz et al., 1994],

the role of individual operators changes during the optimization run.

Here, the approach established by [Davis, 1989] is reviewed. The key idea is to use op-

erators which produce better offspring more often than those performing poorly. Besides

promoting the operator which produced a good offspring, the operator responsible for cre-

ating its parent should receive some credit as well. In achieving this goal, the following

guide-lines may be followed.

Whenever a new member is added to a population in step 7 of Algorithm 3.2 a pointer

is set to its parent(s) and to the operator which created it. Further, a check is performed

whether the new individual is the best one among all individuals in the current population.

If yes, the amount that it is better is stored as a “local delta”. This information is stored in

some “adaptation window” which contains last W inserted members with parents considered
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M generations back. The performance of each operator is computed after every I inserted

new individuals. In the first step, every offspring in adaptation window passes P times its

local delta to its parents and this parent(s) passes P portion of this value back to their parents

etc. Then, delta is summed up for all members in adaptation window for all operators and

operator probabilities are updated - each operator keeps S portion of its original value and

remaining part is redistributed according to operators performance. More information can

be found in [Davis, 1989].

In the present study, the AUSA algorithm served to assess applicability of the above

procedure. Following [Davis, 1989], every operator was given initially the same probability

and the parameter S was set to 0.01. The AUSA algorithm was called twenty times and

terminated once the first adaptation took place. The adapted values were then averaged

over all runs to obtain the initial probabilities of individual operators. The resulting oper-

ator probabilities are displayed in Table 3.3. It is evident that for the initial parts of the

optimization process most of the progress is done by the boundary mutation and simple

arithmetic crossover.

Operator Initial probability

Uniform mutation 0.150

Boundary mutation 0.278

Non-uniform mutation 0.063

Multi-non uniform mutation 0.048

Simple crossover 0.040

Simple arithmetic crossover 0.233

Whole arithmetic crossover 0.097

Heuristic crossover 0.088

Table 3.3: Initial operator probabilities resulting from adaptation procedure

Finally, using these initial values of operator probabilities, the algorithm was rerun again
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Table 3.4: AUSA algorithm with adaptive operator probabilities

Number Returned value ×105 Number of evaluations

found Min Avg Max Min Avg Max

12/20 5.9 11.8 36.9 2,092 6,358 25,316

twenty times. The adaptivity setting was the same as in the previous example, except the

value of S was set to .7. The results appear in Table 3.4.

Unfortunately, this approach seems to provide no benefit in the present optimization

problem. The reason is obvious - the optimization procedure gets trapped in a local mini-

mum. This can be attributed to a rapid increase in the probability of crossover operators as

they produce good offspring.

Problem-dependent operators

The problem-dependent operators are the principle source of improvement. Their role in the

present context is explored next.

Suppose that the parent configuration we selected for reproduction meets the impene-

trability constraint imposed on the fibers arrangement. In the recombination step we wish

to introduce only such operators, which yield an offspring configuration complying with the

impenetrability condition as well. To state this in more formal manner, we define the search

space as

S =
{
xi ∈ 〈0;H1〉, yi ∈ 〈0;H2〉 :

√
(xi − xj)2 + (yi − yj)2 ≥ 2R ; i, j = 1, . . . , N

}
. (3.4)

The simplest way to fulfill the above condition may rely on randomly generating a vector

x′ until the condition x′ ∈ S is met (death penalty to an infeasible individual (see e.g.

[Povirk, 1995, Yeong and Torquato, 1998]). Clearly, this process may become prohibitively

expensive, especially for a higher concentration of fibers.

To deal with this problem, it is more efficient to first determine a set of possible locations
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Figure 3.4: Allowable position of particle

of all particles and successively generate a new particle or particles, which belong to this

set. Unfortunately, solving this problem in its full generality is rather complicated. Thus,

instead of identifying allowable locations of all particles, we limit our attention to a set of

possible locations of one particle permitted to translate either in the x or y direction, while

the coordinates of the remaining fibers are kept fixed. We shall denote these sets as

S|yi =
{
xi ∈ 〈0;H1〉 : x ∈ S

}
S|xi =

{
yi ∈ 〈0;H2〉 : x ∈ S

}
. (3.5)

To construct the above sets imagine a collection of identical cylinders, surrounded by a

certain concentric protective cylindrical surface with diameter equal to 2R (see also discussion

in Section 2.2.2). In view of the impenetrability constraint the secure cylinder cannot be

occupied by another fibers’ center. In particular, to identify space S|yi with the i-th particle

we draw a line x = xi, which intersects the protective surfaces around all remaining fibers

in n− 1 intervals 〈a′j; b′j〉 where j = 1, . . . , (n− 1). Then the set S|yi of allowable locations

of the particle i is given by (see Fig 3.4)

S|yi = 〈0;H1〉\
n−1⋃
j=1

〈a′j; b′j〉 =
n⋃
j=1

〈aj; bj〉. (3.6)
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Similarly we write

S|xi = 〈0;H2〉\
n−1⋃
j=1

〈a′j; b′j〉 =
n⋃
j=1

〈aj; bj〉. (3.7)

In the spirit of Eqs. (3.6) and (3.7) we can now define the following set of problem-specific

operators (see also [Michalewicz et al., 1994]):

Uniform mutation Generate an integer number i = u[1, N ] with uniform distribution

on a closed interval 〈1;N〉, select the x or y coordinate, evaluate S|xi or S|yi , select

k = u[1, n] and set:

x′i = xi + u(ak, bk)

or

y′i = yi + u(ak, bk),

while fixing the remaining coordinates.

Non-uniform mutation Select i = u[1, N ] and the x or y coordinate, evaluate S|xi or S|yi .

Select k such that xi ∈ 〈ak; bk〉 or yi ∈ 〈ak; bk〉, generate a real number p = u(0, 1) with

uniform distribution on a closed interval 〈0; 1〉 and set:

x′i =

 xi + (bk − xi)f(t), if p < .5

xi + (ak − xi)f(t), if p ≥ .5

or

y′i =

 yi + (bk − yi)f(t), if p < .5

yi + (ak − yi)f(t), if p ≥ .5
,

while fixing the remaining coordinates. The number f(t) is the same as in Section 3.1.2

Multi-non-uniform mutation Non-uniform mutation applied successively to all coordi-

nates of X.
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Simple two-point crossover Select i = u[1, n] and j = u[1, n] ∧ i < j. Repeat for k =

i, . . . , j :

1x′k = 1xk(1− α) +2 xkα

2x′k = 1xkα +2 xk(1− α),

and

1y′k = 1yk(1− α) +2 ykα

2y′k = 1ykα +2 yk(1− α),

where e.g. 2xk corresponds to the x coordinate of k-th particles of the second parent.

The parameter α is set to 1 initially. If x′k 6∈ S|yi or y′k 6∈ S|xi , respectively, decrease α

by 1/nd; nd is the user-defined parameter (number of decreasing steps). This procedure

is repeated until x′k ∈ S|yi or y′k ∈ S|xi holds (this condition is always met for α = 0).

The above operators were implemented into the AUSA algorithm with considerable

success. The algorithm met the convergence criteria in all 20 runs and the average number

of evaluations was reduced by 50%. The results are summarized in Table 3.5

Table 3.5: AUSA algorithm with problem-dependent operators

Number Returned value ×105 Number of evaluations

found Min Avg Max Min Avg Max

20/20 5.9 6.0 6.0 543 4,403 11,516
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Figure 3.5: Variation of the objective function with the number of particles in the PUC.

3.1.5 Determination of the periodic unit cell

The principal objective of the present work is to construct a certain periodic unit cell,

which may substitute the real microstructure when estimating the macroscopic response of a

random composite subjected to uniform stresses or strains. In particular, we wish to assess a

sensitivity of the proposed solution procedure to the size of the unit cell (number of particles

within the PUC).

Here, this task is explored from the objective function point of view. The essential parts

of the optimization procedure are reviewed in conjunction with the AUSA method. Results

are presented for a selected set of unit cells.

Finding an optimal fiber configuration. Optimal fiber configuration was found com-

bining the AUSA method (Algorithm 3.3) with the problem-specific operators pre-

sented in Section 3.1.4. The initial results appear in Fig. 3.5 showing a variation of

the objective function, with the number of particles (fibers) within the unit cell. In all

examples the initial population was generated purely randomly. Optimization process

was terminated, when one of the following conditions was met:
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• Algorithm returned value F (xNH1,H2
) ≤ ε = 10−2 for N = 32.

• Number of function evaluations exceeded 250,000.

The first condition is usually fulfilled for small values of Nm, while the second one

takes effect in remaining cases. The results indicate that for unit cells with less than

10 particles the above convergence criterion was too severe. On the other hand, we

registered a significant drop of the objective function already for 4 particles within the

unit cell.

Results derived for each unit cell were chosen as the minimum from ten independent

runs. In every run we started from only four points, in which we attempted to fit

functions K0(r) and K(r) (N = 4 in Eq. (3.1)). To improve conformity of both

functions we successively increased the number of sampled points up to N = 32 while

using the previous solution as the initial guess (best 50% of individuals were used).

The selection of sampled points was biased towards the ratio r/R = 2 to capture an

apparent correlation of individual space points within the sample.

Finding an optimal side ratio. The Golden Section search method, Algorithm 3.1, with

values ηa = 1.0, ηb = 2.0 and ε = .05 was employed. Fiber configuration corresponding

to Nm = 32 for a given set of values H1 and H2 was used as a starting point for the

second optimization problem (P2).

To illustrate this procedure we considered a periodic unit cell with 10 particles. Results

appear in Fig. 3.6. Evolution of the unit cell with increasing accuracy of the solution is

plotted in Fig. 3.6(a), whereas Fig. 3.6(b) displays a variation of the normalized second

order intensity function K(r)/πr2 corresponding to various stages of the solution process.

A rather noisy character of this function associated with a given number of sampled points

is attributed to the difference between the number of sampled points and the number of

selected radii r for which this function is actually presented (all functions, including the one

corresponding to the real microstructure were computed for the same radii r). Finally, some
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Figure 3.6: Evolution of the 10 particles PUC

examples of the resulting unit cells are illustrated in Fig. 3.7 together with the hexagonal lat-

tice shown for comparison. It is evident, that periodic unit cells resulting from optimization

are able to capture the clustering of particles in the original micrograph to some extent.

3.2 Effective response of composites with periodic microstructure

This section illustrates the capability of the present approach by comparing the effective

response of both the real composite and selected set of associated periodic unit cells. With

reference to the introductory part the micromechanical analysis is restricted to elastic and

viscoelastic response of a composite aggregate to a prescribed path of uniform macroscopic

strains or stresses and uniform temperature change. The principle objective of this section

is to offer the smallest representative volume element (the periodic unit cell with the least

number of particles) which gives the same macroscopic response as the real composite. Recall

that results discussed in the previous section suggest, see Fig. 3.5, that the periodic unit cell

with at least ten particles should be considered for the numerical analysis.
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(a)

(c)

(b)

(d)

Figure 3.7: Periodic unit cells: (a) Hexagonal lattice, (b) 2-fibers PUC, (c) 5-fibers PUC,

(d) 10-fibers PUC.
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3.2.1 Effective elastic moduli

To narrow a vast body of material on this subject we limit our attention to studies deal-

ing with the finite element analysis of the periodic unit cell [Teplý and Dvořák, 1988] and

[Michel et al., 1999, to cite a few]. This approach becomes particularly attractive when

applied to “simple” microstructures such as those displayed in Fig. 3.7 and will be used

throughout this section to estimate overall elastic moduli of a graphite fiber tow impreg-

nated by polymer matrix, Fig. 2.1.

The overall elastic behavior of such a composite is then governed by its microstructure

and by the behavior of individual phases conveniently described by displacement, strain and

stress fields in the form

∂σ(x) = −b(x), (3.8)

ε(x) = ∂Tu(x), (3.9)

σ(x) = L(x)ε(x), ε(x) = M(x)σ(x), (3.10)

where u is the displacement field; ε and σ are the strain and stress fields, respectively; L is

the stiffness tensor and M is the compliance tensor such that L−1 = M; b is the vector of

body forces and ∂ is the differential operator matrix [Bittnar and Šejnoha, 1996, p. 9]

The following discussion is limited to two-phase fibrous composites with fibers aligned

along the x3 axis. We further assume that each phase is transversally isotropic with x3 being

the axis of rotational symmetry. Additional simplification arises when neglecting the out-of-

plane shear response. The generalized plane strain is then a natural assumption. In such a

state, the only non-zero components of the strain and stress tensors are ε11, ε12, ε22, ε33 and

σ11, σ12, σ22, σ33, respectively. Note that due to perfect bonding between individual phases

the components ε33 and σ33 attain constant values. Employing Hill’s notation [Hill, 1964]
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the stiffness tensor L can be represented by the 4×4 matrix in the form

L =



(k + m) (k−m) 0 l

(k−m) (k + m) 0 l

0 0 m 0

l l 0 n


, (3.11)

which in general is function of x; constants k,m,n and l are related to the material engineering

constants by

k = −[1/GT − 4/ET + 4ν2
A/EA]−1 l = 2kνA

n = EA + 4kν2
A = EA + l2/k m = GT.

Assuming constant phase moduli and with reference to Eqs. (3.10) the elastic constitutive

equations of the phases are given by

σr(x) = Lrεr(x), εr(x) = Mrσr(x), r = f,m. (3.12)

Define the following mechanical loading problems

u0(x) = E · x x ∈ S, (3.13)

p0(x) = Σ · n(x) x ∈ S, (3.14)

where u0 and p0 are the displacement and traction vectors at the external boundary S of a

representative volume element Ω of the composite; n is the outer unit normal to S; E and Σ

are the applied macroscopic uniform strain and stress fields, respectively. The macroscopic

constitutive relations are then provided by

〈σ(x)〉 = 〈L(x)ε(x)〉 =
2∑
r=1

crLr 〈εr(x)〉 = LE (3.15)

〈ε(x)〉 = 〈M(x)σ(x)〉 =
2∑
r=1

crMr 〈σr(x)〉 = M Σ, (3.16)

where 〈·〉 stands for the spatial average of a given field, cr is the volume fraction of the rth

phase, and L and M are the effective stiffness and compliance matrices of the heterogenous
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material, respectively. Eqs. (3.15) and (3.16) follow directly from Hill’s lemma [Hill, 1963].

He proved that for compatible strain and equilibrated stress fields the following relation

holds

〈
ε(x)Tσ(x)

〉
= 〈ε(x)〉 T 〈σ(x)〉 , (3.17)

and consequently

ET LE = 〈ε(x)TL(x)ε(x)〉, (3.18)

ΣT M Σ = 〈σ(x)TM(x)σ(x)〉. (3.19)

Eq. (3.17) states in fact that the average of “microscopic” internal work is equal to the

macroscopic work done by internal forces. The above relations provide the stepping stone

for the derivation of effective properties of composite materials.

The following paragraphs outline evaluation of effective properties of a composite aggre-

gate represented here by the periodic material models of Fig. 3.7. Two specific approaches

corresponding to loading conditions (3.13) and (3.14) are discussed in the sequel.

Formulation based on strain approach

Consider a material representative volume defined in terms of a periodic unit cell (PUC).

Suppose that the PUC is subjected to boundary displacements u0 resulting in a uniform

strain E throughout the body, Eq. (3.13). In view of boundary conditions imposed on the

unit cell the strain and displacement fields in the PUC admit the following decomposition

u(x) = E · x + u∗(x), ∀x ∈ Ω, u = u0 ∀x ∈ S (3.20)

ε(x) = E + ε∗(x), ∀x ∈ Ω. (3.21)

The first term in Eq. (3.20) corresponds to a displacement field in an effective homogeneous

medium which has the same overall properties at the composite aggregate. The fluctuation

part u∗ enters Eq. (3.20) as a consequence of the presence of heterogeneities and has to

disappear upon volume averaging, see [Beran, 1968] for further discussion. This condition
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is met for any periodic displacement field with the period equal to the size of the unit

cell under consideration, [Michel et al., 1999, and references therein]. The periodicity of u∗

further implies that the average of ε∗ in the unit cell vanishes as well. Hence

〈ε(x)〉 = E + 〈ε∗(x)〉 , 〈ε∗(x)〉 =
1

Ω

∫
Ω
ε∗(x)dx = 0. (3.22)

Next, assume a virtual displacement δu(x) = δE · x + δu∗(x), with δu∗(x) being periodic.

Then the principle of virtual work reads

〈
δε(x)Tσ(x)

〉
= 〈δε(x)〉 T 〈σ(x)〉 = 0, (3.23)

since 〈σ〉 = 0. Eq. (3.23) is essentially the Hill lemma introduced by Eq. (3.17).

Solving the above relation calls for a suitable numerical technique such as the Finite

Element Method (FEM), [Bittnar and Šejnoha, 1996]. In this framework the displacement

field in Eq. (3.20) assumes the form

u(x) = E · x + N(x)r, (3.24)

where N(x) represent shape functions of a given element (constant strain triangles are used

in the present study) and r is the vector of unknown degrees of freedom. The corresponding

strain field is then provided by

ε(x) = E + B(x)r. (3.25)

Introducing Eq. (3.25) into Eq. (3.23) gives for any kinematically admissible strains δε∗ =

Bδu∗ the associated system of linear equations in the form

Kr = f , (3.26)

where

K =
∑
e

Ke where Ke =
1

Ω

∫
Ae

BTLeB dAe

f =
∑
e

f e where f e = − 1

Ω

∫
Ae

BTLeE dAe, (3.27)
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where K is the stiffness matrix of the system and f is the vector of global nodal forces

resulting from the loading by E; e stands for the number of elements, Ae is the area of

element e and Ω is the area of the PUC.

System (3.26) can be used to provide the coefficients of the effective stiffness matrix L

as volume averages of the local fields derived from the solution of four successive elastic-

ity problems. To that end, the periodic unit cell is loaded, in turn, by each of the four

components of E, while the other three components vanish. The volume stress averages

normalized with respect to E then furnish individual columns of L. The required period-

icity conditions (same displacements u∗ on opposite sides of the unit cell) is accounted for

through multi-point constraints.

Formulation based on stress approach

Sometimes it is desirable to apply the overall stress Σ, Eq. (3.14), instead of the overall

strain E. Eq. (3.23) then modifies to〈
δε(x)Tσ(x)

〉
= δETΣ, Σ = 〈σ(x)〉 . (3.28)

Clearly, such a loading condition leaves us with unknown overall strain E and periodic

displacement field u∗ to be determined. Substituting Eq. (3.21) into Eq. (3.28) yields

δET 〈L(x) (E + ε∗(x))〉+
〈
δε∗(x)TL(x)E

〉
+
〈
δε∗(x)TL(x)ε∗(x)

〉
= δETΣ. (3.29)

Since δE and δε∗(x) are independent, the preceding equation can be split into two equalities

δETΣ = δET [〈L(x)〉E + 〈L(x)ε∗(x)〉] (3.30)

0 =
〈
δε∗(x)TL(x)

〉
E +

〈
δε∗(x)TL(x)ε∗(x)

〉
Finally, following the same lines as in the previous paragraph the FE discretization, Eqs.

(3.24) and (3.25), provides the linear coupled system in the form, [Michel et al., 1999],
1

Ω

∫
Ω

L dΩ
1

Ω

∫
Ω

LB dΩ

1

Ω

∫
Ω

BTL dΩ
1

Ω

∫
Ω

BTLB dΩ


 E

r

 =

 Σ

0

 . (3.31)
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The above system of equations serves to derive the coefficients of the effective compliance

matrix M. In analogy with the strain approach, the periodic unit cell is loaded, in turn, by

each of the four components of Σ, while the other three components vanish. The volume

strain averages normalized with respect to Σ then supply individual entries of M.

3.2.2 Numerical results

In keeping up with our promise we now present several numerical results derived for a given

material system, in order to provide estimates of the minimum size of the periodic unit

cell with regard to the material effective properties. A generalized plane-strain state is

assumed throughout the analysis. Details regarding the theoretical formulation are given in

[Michel et al., 1999].

As an example we consider a brittle (or quasibrittle) composite system composed of the

graphite fibers embedded in the epoxy matrix. Material properties are listed in Table 3.6.

Table 3.6: Material properties of T30/Epoxy system

phase EA ET GT νA

[GPa] [GPa] [GPa]

fiber 386 7.6 2.6 0.41

matrix 5.5 5.5 1.96 0.40

First, to prove applicability of the proposed method, we compare the elastic moduli

derived for the original microstructure, Fig 2.1, with those found for the periodic unit cells

displayed in Fig. 3.7. Note that the solution of the original problem requires to process of

the order of magnitude more equations than the solution based on the PUC approach.

Selected components of the effective stiffness matrix L are stored in Table 3.7. Re-

sults obtained for the hexagonal arrangements of fibers are provided for additional compar-

ison. Evidently, the periodic unit cell unlike the hexagonal lattice, which corresponds to the
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Table 3.7: Components of the effective stiffness matrix [GPa]

Unit cell L11 L22 L33 L44 cf

Original 10.76 10.73 2.215 177.2 0.44

2 fibers PUC 10.78 10.75 2.202 177.2 0.44

5 fibers PUC 10.76 10.73 2.215 177.2 0.44

10 fibers PUC 10.76 10.73 2.215 177.2 0.44

Hexagonal array 10.74 10.74 2.213 177.3 0.44

transversally isotropic medium, is capable of capturing a slight anisotropy associated with

the real microstructure. In addition, the results in Table 3.7 also promote the PUC con-

sisting of 5 fibers only as the smallest one we should consider for the evaluation of effective

properties.

To further support the present approach we determined the mean value and standard

deviation of effective stiffnesses derived from five independent runs for unit cells defined

through a random cut of the original micrograph, Fig. 2.1(b). Dimensions of such a unit

cell were selected to comply with dimensions found for the PUC consisting of 10 particles.

Results, given in Table 3.9, are rather discouraging and should caution the reader against

pursuing this approach.

Table 3.8: Variation of effective stiffnesses for five ten-particle optimal PUC

Modulus Mean value Standard deviation Variation coefficient

[GPa] [GPa] [%]

L11 10.76 0.013 0.12

L22 10.73 0.013 0.12

L33 2.215 0.003 0.13



74

Finally, to confirm our theoretical expectations, we investigated an influence of the pro-

posed optimization technique on the effective moduli computed for the 10-fibers PUC de-

rived from five independent optimization runs. Results stored in Table 3.8 show that the

final moduli are not sensible to the particular fiber configuration (each optimization run

provides a slight different fiber arrangements having, however, the same material’s statistics

up to two-point probability function).

Table 3.9: Variation of effective stiffnesses for five randomly picked ten-particle PUC

Modulus Mean value Standard deviation Variation coefficient

[GPa] [GPa] [%]

L11 10.73 0.32 2.97

L22 10.71 0.38 3.54

L33 2.210 0.07 3.48

3.3 Thermal and residual fields

Apart from mechanical loading, Eqs. (3.13) and (3.14), composite materials often experi-

ence loading by distribution of local eigenstrains or eigenstresses. Regardless of their origin

they may be interpreted as internal loads in an otherwise elastic medium [Fish et al., 1997,

Dvorak and Benveniste, 1992a]. Thermal and viscoelastic strains, admitted in the present

analysis, together with transformation strains discussed in Chapter 4 are specific examples

of such fields. Extension to the modeling of inelastic deformation and various damage events

such as fiber debonding and/or sliding by means of equivalent eigenstrains has also been

successfully examined [Sejnoha, 1999, Srinivas, 1997, Dvorak and Benveniste, 1992b].
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3.3.1 Thermomechanical response

Consider the RVEs of Fig. 3.7. Further suppose that in addition to mechanical loading

the representative volume is subjected to a uniform temperature change ∆θ. The local

constitutive equations (3.10) are then augmented to read

σ(x) = L(x)ε(x) + λ(x), ε(x) = M(x)σ(x) + µ(x), r = f,m, (3.32)

and similarly the phase constitutive equations (3.12) become

σr(x) = Lrεr(x) + λr, εr(x) = Mrσr(x) + µr, r = f,m, (3.33)

where the local phase eigenstrain µr = mr∆θ and eigenstress λr are related by

µr = −Mrλr, λr = −Lrµr, r = f,m. (3.34)

The thermal strain vector mr lists the coefficients of thermal expansion of the phase r.

To proceed we recall the stress control approach and rewrite Eq. (3.28) in the form

〈
δε(x)Tσ(x)

〉
=
〈
δε(x)TL(x) (ε(x)− µ(x))

〉
= δETΣ. (3.35)

With reference to Eq. (3.31) the resulting system of algebraic equations arising in the Finite

Element formulation assumes the form
1

Ω

∫
Ω

L dΩ
1

Ω

∫
Ω

LB dΩ

1

Ω

∫
Ω

BTL dΩ
1

Ω

∫
Ω

BTLB dΩ


 E

r

 =


Σ +

1

Ω

∫
Ω

Lµ dΩ

1

Ω

∫
Ω

BTLµ dΩ

 . (3.36)

When excluding the thermal effects the above equation reduces to Eq. (3.31). However,

when the loading conditions are limited to the uniform temperature change equal to unity,

the components of the overall average strain comply with the effective coefficients of thermal

expansion m. Note that the present formulation is not applicable with the strain control

conditions when admitting the thermal loading. Clearly, the overall strain E is then not

known and cannot be prescribed.
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We now proceed to examine various connections between the thermal and mechanical

properties of composite materials. To begin, recall the primary principle of virtual work

written in the form ∫
Ω
δε(x)Tσ(x) dΩ = Ω δETΣ. (3.37)

When introducing Eq. (3.32)2 into Eq. (3.37) we get∫
Ω
δσ(x)TMσ(x) dΩ = Ω δETΣ, δµ(x) = δm(x)∆θ = 0. (3.38)

Then, substituting Eq. (3.32)2 into the dual virtual principle gives∫
Ω
δσ(x)T [M(x)σ(x) +m(x)∆θ] dΩ = Ω δΣTE = Ω δETLE. (3.39)

Introducing σ(x) = B(x)Σ and combining Eqs. (3.38) and (3.39) yields

Ω δETΣ + δΣT
∫

Ω
B(x)Tm(x) dΩ ∆θ = Ω δETLE, (3.40)

δΣ = LδE,

where B(x) represents the mechanical stress influence function. Eqs. (3.40) then readily

provide the overall stress and strain fields in the form

Σ + Lm∆θ = LE, (3.41)

Σ = L (E −m∆θ) , E = MΣ +m∆θ, (3.42)

where the macroscopic thermal strain vector m∆θ is given by

m∆θ = ∆θ
1

Ω

∫
Ω

B(x)Tm(x) dΩ. (3.43)

After setting ∆θ to unity and introducing the phase volume fraction cr = Ωr
Ω

we arrive at

the familiar Levin formula

m =
∑
r

Ωr

Ω

∫
Ωr

B(x)Tmr dΩ =
∑
r

crBr
Tmr. (3.44)

Under pure thermal loading Eq. (3.422) reduces to E = m∆θ where the overall average

strain E follows from the solution of the system of equations (3.31). On the contrary,
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when setting ∆θ = 0 the system (3.31) can be used to extract the phase concentration

factor tensors Br. Thus both Eqs. (3.421) and (3.44) can be exploit to obtain the effective

coefficients of thermal expansion listed in vector m.

An alternate approach relies on standard volume averaging. In particular, recall the

strain volume average in the form

〈ε(x)〉 =
1

Ω

∫
Ω

[M(x)σ(x) +m(x)∆θ] dΩ

= E + 〈ε∗(x)〉 , 〈ε∗(x)〉 = 0, (3.45)

which directly provides the macroscopic constitutive law Eq. (3.422)

1

Ω

∫
Ω

[M(x)σ(x) +m(x)∆θ] dΩ = MΣ +m∆θ. (3.46)

When admitting only thermal effects, Σ = 0, and introducing the thermal stress influence

function b(x) such that

σ(x) = b(x)∆θ, (3.47)

we find

〈σ(x)〉 =
∑
r

Ωr

Ω

∫
Ωr

b(x) dΩ =
∑
r

crbr = 0. (3.48)

After combining Eqs. (3.46) and (3.48) we arrive at the overall thermal strain vector now

given by

m =
1

Ω

∫
Ω

M(x)b(x) dΩ + 〈m(x)〉 . (3.49)

Assuming again piecewise uniform variation of phase thermal and elastic properties we finally

get

m =
∑
r

cr (Mrbr +mr) . (3.50)

Numerical results

Here we present some numerical results obtained for the graphite-epoxy composite system.

The material properties are listed in Table 3.10. The analysis was carried out under gener-

alized plane strain conditions.
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Table 3.10: Material properties of T30/Epoxy system

phase EA ET GT νA αA αT

[GPa] [GPa] [GPa] [K−1] [K−1]

fiber 386 7.6 2.6 0.41 −1.2× 10−6 7× 10−6

matrix 5.5 5.5 1.96 0.40 2.4× 10−5 2.4× 10−5

The resulting effective thermal expansion coefficients for selected periodic unit cells to-

gether with the results obtained with the Mori-Tanaka method and hexagonal arrangement

of fibers are stored in Table 3.11. In turns out that the periodic unit cell derived from the

optimization procedure is again able to reflect the slight geometrical anisotropy possessed

by the current material.

Table 3.11: Components of the effective thermal expansion coefficients [K−1]

Unit cell αx αy αA cf

Original 2.269× 10−5 2.248× 10−5 −7.463× 10−7 0.436

2 fibers PUC 2.273× 10−5 2.244× 10−5 −7.463× 10−7 0.436

5 fibers PUC 2.269× 10−5 2.248× 10−5 −7.462× 10−7 0.436

10 fibers PUC 2.269× 10−5 2.249× 10−5 −7.462× 10−7 0.436

Hexagonal array 2.259× 10−5 2.259× 10−5 −7.462× 10−7 0.436

Mori-Tanaka 2.250× 10−5 2.250× 10−5 −7.464× 10−7 0.436

Finally, Table 3.12 shows that the values of effective coefficients of thermal expansion

obtained using relations (3.36), (3.44) and (3.50) are identical.
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Table 3.12: Comparison of relations (3.36), (3.44) and (3.50) for 5-fiber PUC [K−1]

Relation αx αy αA

Equation 21 2.269×10−5 2.249×10−5 -7.462×10−7

Equation 30 2.269×10−5 2.249×10−5 -7.462×10−7

Equation 36 2.269×10−5 2.249×10−5 -7.462×10−7

3.3.2 Thermo-viscoelastic response

Majority of material systems currently at the forefront of engineering interest experience the

time dependent behavior at sustained loading. Examples include polymer matrix composite

systems also examined in the present work. Constitutive relations that describe the time

dependent deformation of such systems usually assume linearly elastic response of fibers

while liner thermo-viscoelastic models are appropriate for polymer matrices in most practi-

cal applications. Inventory of contributions to viscoelastic analysis of composites includes

[Chaboche, 1997, Wafa, 1994, Schapery, 1981, among others]. This section revisits the sub-

ject in conjunction with the present modeling framework developed for random composites.

Macroscopic constitutive law

Constitutive equations for viscoelastic constituents can be formulated either in the integral

form, or in the incremental form. The incremental form, that is more convenient for numer-

ical implementation, can be derived by converting the integral equations into a rate-type

form and by subsequent integration under certain simplifying assumptions. Typically, the

degenerate (Dirichlet) kernels

J(t, τ) =
M∑
µ=1

1

Dµ(τ)
{1− exp [yµ(τ)− yµ(t)]} ,

R(t, τ) =
M∑
µ=1

Eµ(τ) exp [yµ(τ)− yµ(t)], (3.51)
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Figure 3.8: Rheological models: a) Maxwell chain, b) Kelvin chain

where yµ(t) = (t/Θµ)qµ , are used to approximate the creep and relaxation functions J(t, τ)

and R(t, τ), respectively. Retardation times Θµ must satisfy certain rules necessary for the

success of calculation [Bazant and Wu, 1973]. The coefficient qµ is introduced in order to

reduce the number of terms of the Dirichlet expansions. Functions Dµ and Eµ are usually

obtained by fitting the creep or relaxation functions via Eqs. (3.51) using the method of least

squares.

Recall that the compliance function of a linear viscoelastic material represents the strain

at time t due to a unit stress applied at time τ and kept constant, while the relaxation

function represents the stress at time t due to a unit strain applied at time τ and held

constant. When written in the form of Dirichlet series, these functions are identical with

representation provided by Kelvin and Maxwell chains, respectively (see Fig. 3.8). For

example, the Maxwell chain model gives the local stress in the form

σ(x) =
M∑
µ=1

σµ(x), (3.52)
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where σµ, called hidden stress, represents the stress in the µth Maxwell unit, which satisfies

the differential constitutive equation

σ̇µ(x) + ẏµσµ(x) = Eµ(x)L̂(x)(ε̇(x)− ε̇0(x)), ẏµ(t) =
Eµ(t)

ηµ(t)
, (3.53)

where L(x, t) = Eµ(x, t)L̂(x) is the instantaneous stiffness matrix of a linear elastic isotropic

material at the material point x.

Numerical solution of the viscoelastic problem is based on dividing the time axis into

intervals of length ∆ti. Suppose that at the beginning of the ith interval 〈ti−1, ti〉, the stress

vector σµ(x, ti−1), µ = 1, 2, . . . ,M , is known. The incremental form of Eq. (3.53) is then

written as [Bittnar and Šejnoha, 1996]

∆σi(x) = Li(x) (∆εi(x)−∆µi(x)) , (3.54)

where the current increment of local eigenstrain reads

∆µi(x) = ∆ε0
i (x) + ∆ε̂i(x). (3.55)

The initial strain vector ∆ε0
i may represent many different physical phenomena including

thermal strains, shrinkage, swelling, plastic strains, etc. When admitting only thermal and

creep effects we get

∆ε0
i (x) = m(x)∆θi, ∆ε̂i(x) =

1

Êi(x)

M∑
µ=1

(
1− e−∆yµ

)
σµ(x, ti−1). (3.56)

The stiffness Êi for the ith interval is determined by

Êi(x) =
M∑
µ=1

Eµ(x, ti −∆ti/2)
(
1− e−∆yµ

)
/∆yµ. (3.57)

The above description of the material properties on the microscale is sufficient to deter-

mine the local stress and strain fields by increments of the overall strain, E, or stress Σ. To

that end, consider an incremental form of Eq. (3.35)

〈
δεT∆σ

〉
= δET∆Σ. (3.58)
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Substituting the local strain increment ∆ε(x) = ∆E + ∆ε∗(x) together with local consti-

tutive equation (3.54) into Eq. (3.58) provides the desired incremental form of Eq. (3.36)

as 
1

Ω

∫
Ω

Li dΩ
1

Ω

∫
Ω

LiB dΩ

1

Ω

∫
Ω

BTLi dΩ
1

Ω

∫
Ω

BTLiB dΩ


 ∆Ei

∆ri

 =


∆Σi +

1

Ω

∫
Ω

Li∆µi dΩ

1

Ω

∫
Ω

BTLi∆µi dΩ

 . (3.59)

Finally, after rewriting the above equation as K11 K12

K21 K22


i

 ∆E

∆r


i

=

 ∆Σ + ∆F 0

∆f 0


i

, (3.60)

and eliminating the fluctuating displacements vector ∆ri we arrive at the incremental form

of the macroscopic constitutive law

∆Σi = Li∆Ei + ∆Λi, (3.61)

where

Li =
(
K11 −K12K

−1
22 KT

12

)
i
, ∆Λi = −∆F 0

i +
(
K12K

−1
22 ∆f 0

)
i
.

Numerical results

As an example, consider an artificial composite system listed in Table 3.13 with the matrix

properties taken from [Fára, 1990].

Table 3.13: Material properties of T30/Epoxy system

phase EA ET GT νA

[GPa] [GPa] [GPa]

fiber 386 7.6 2.6 0.41

matrix 2.1 2.1 0.75 0.40

The time dependent material properties of the epoxy matrix were derived experimentally

from a set of well cured specimens, so that the material aging was neglected [Fára, 1990].



83

0 10 20 30 40 50

t-τ [days]

0

500

1000

1500

2000

R
(t

-τ
) [

M
P

a]
R - Findley's relation 
R - Dirichlet series expansion

Figure 3.9: Relaxation function

The resulting experimental data were approximated by Findley’s expression

J(t, τ) = a+ b(t− τ)n, (3.62)

were for the present material a = 0.04744, b = 0.002142, n = 0.3526 with (t − τ) given in

minutes. The corresponding relaxation function R(t, τ) appears in Fig. 3.9. Ten elements of

the Dirichlet series expansion Eq. (3.51) uniformly distributed in log(t− τ) over the period

of hundred days were assumed. The fit of the relaxation function Eq. (3.62) by Eq. (3.512)

is plotted in Fig. 3.9.

Numerical results are presented only for transverse tension. Both the strain and stress

control conditions are considered in simulations. Fig. 3.10 illustrates the time variation of

the applied load. The corresponding composite response then appears in Fig. 3.11. Judging

from our previous results, the ten-particle unit cell is assumed to represent the material

behavior of a real composite. Both the creep Fig. 3.11(a) and relaxation Fig. 3.11(b) tests

confirm a good correlation between statistically optimal unit cells and the PHA model. On

the contrary, an anisotropic character of the present medium evident from Fig. 3.12 cannot

be attained by simple periodic unit cells (recall Tables 3.7 and 3.11). The present approach

is therefore preferable.
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Figure 3.11: Overall response: a) creep test, b) relaxation test

3.3.3 Closure

In the present contribution we revisited a popular problem of evaluating the effective proper-

ties of two-phase disordered media. In particular, we turned our attention to a real composite

material represented here by a bundle of non-overlapping graphite fibers surrounded by the

epoxy matrix, Fig. 2.1.

The random character of the microstructure does not permit a direct use of various av-

eraging techniques such as the Mori-Tanaka or self-consistent methods. Instead, procedures

incorporating various statistical descriptors such as the joint probability density function

must be used to give proper description of the mechanical behavior of random composites.
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Chapter 2 provides such microstructural information of the fiber tow up to two-point level

tagging this composite with a nice label of being statistically “isotropic” and “ergodic”.

This result allowed to substitute the two-point probability density function with the well

known second order intensity function much more suitable for direct numerical simulations.

Pleasant features of this function examined in Section 2.4 were further exploited, although

indirectly, when evaluating the effective mechanical properties of the composite.

In this particular treatment, however, we abandoned a rather standard approach of in-

corporating the material’s statistics directly into various variational principles [Beran, 1968,

Torquato, 1991, Ponte Casteñada and Willis, 1995, Drugan and Willis, 1996]. Instead, in

view of ensuing analysis of inelastic response of random composites, we followed suggestions

given in [Povirk, 1995] and generated a small unit cell with the same statistics (up to two-

point level) as possessed by the real microstructure. The augmented simulating annealing

method discussed in Section 3.1.2 proved to be a very powerful tool in this matter. At-

tributed to the random nature of genetic algorithms the repeated use of the AUSA method

results in a family of unit cells with slightly different arrangements of fibers but identical

in their statistical details. This was demonstrated in Section 3.2.2 showing the invariance
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of effective properties with respect to individual fiber configurations. It is worth to note

that the second order intensity function (or the pair distribution function), although eval-

uated under assumption of spatial isotropy of fibers locations, can capture, when used in

the optimization problem Eq. (3.1), clustering character of the real microstructure (compare

Figs. 2.3 and 3.7). A slight anisotropy of spatial distribution of fibers is further supported by

results stored in Tables 3.7 and 3.11. Similar conclusion can be further drawn from Fig. 3.12.

A number of other numerical tests explored in Sections 3.2 and 3.3 highlight the need

for proper statistical description when dealing with random composites (recall Tables 3.7–

3.9). Although, by judging from Tables 3.7, 3.11 and Figs. 3.11, one may question the

tedious procedure introduced in the paper, which eventually provides results very similar to

those obtained when simply assuming the hexagonal arrangement of fibers, we note that an

appreciable difference may appear when the contrast between the phases (ratio between the

transverse Young’s modulus of the harder phase to the transverse Young’s modulus of the

softer phase) increases. We further expect the proposed approach to become irreplaceable by

simple unit cells such as the periodic hexagonal array model [Teplý and Dvořák, 1988] when

describing the inelastic response (plasticity, damage) of material systems similar to one under

current investigation. But this has to be yet confirm. On the other hand, as mentioned in

[Teplý and Dvořák, 1988], an application of simple periodic unit cell when used to estimate

overall elastic properties in systems with large volume fraction of the inclusions seems to be

justified. This agrees well with the present study.



Chapter 4

MACROSCOPIC MATERIAL PROPERTIES BASED ON

EXTENDED HASHIN–SHTRIKMAN VARIATIONAL

PRINCIPLES

Basic energy principles were reviewed in the preceding chapter to derive effective ther-

moelastic material properties of a random composite assuming periodic distribution of the

microstructure. Another approach is available when analyzing material elements having a

length scale sufficiently large compare to the microstructural length scale so it can be treated

as statistically representative of the composite. Such a definition of a representative volume

element (RVE) is adopted in the present section when deriving the generalized macroscopic

constitutive equations of composite systems with statistically homogeneous distribution of

phases.

To be consistent with the problems discussed in the previous section we select again the

graphite fiber tow embedded in the polymer matrix as a representative of the two-phase

disordered composite media. Random character of fibers arrangement, typical for such ma-

terial systems, is conveniently described by the two-point probability function. When used

with the Hashin-Shtrikman variational principles this function provides sufficient informa-

tion for obtaining bounds on the thermo-elastic material properties of real composites with

statistically homogeneous microstructure.

In particular, Hashin and Shtrikman [Hashin and Shtrikman, 1963] presented two alter-

native representations of energy functions by incorporating polarization fields relative to a

homogeneous reference (comparison) medium. In this section, we focus on theoretical aspects

associated with the variational formulation for anisotropic and non-homogeneous bodies with



88

Ω
2

3x

x

x1 

Ω
2

3x

x

x1 

u  = u0

= +
L L L 

u

00
λ τ

Step Step IIIGeneral problem

S S S

Ω
2

3x

x

x1 

u=u

I

I

I

=0

Figure 4.1: Body with prescribed surface displacements including eigenstresses

either prescribed displacements u = u or tractions p = p along the entire boundary S of

the composite. In addition, eigenstrains (stress free strains) or eigenstresses are admitted in

the present formulation.

4.1 Body with prescribed surface displacements and eigenstresses

The computational procedure is split into two steps. First, suppose that an affine displace-

ment field u0(x) = E · x is prescribed. The corresponding uniform strain E and stress Σ

fields are related through constitutive law in the form

Σ = L0E in Ω, u0 = u on S, (4.1)

where L0 is the material stiffness tensor of a homogeneous reference material.

Next, a geometrically identical body, generally anisotropic and heterogeneous, with the

same prescribed surface displacements is considered. Associated displacements u, strains ε

and stresses σ are yet to be determined. Generalized Hook’s law including eigenstresses λ

is then written as

σ(x) = L(x)ε(x) + λ(x) in Ω,u = u on S. (4.2)

Following the Hashin-Shtrikman idea, we introduce the symmetric stress polarization tensor

τ such that

σ(x) = L0ε(x) + τ (x). (4.3)
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In addition, denote

u′ = u− u0 in Ω,u′ = 0 on S (4.4)

and

ε′ = ε−E, σ′ = σ −Σ in Ω. (4.5)

The objective is to formulate a variational principle describing the behavior of the nonhomo-

geneous and anisotropic material subjected to known eigenstresses and prescribed boundary

displacements. Schematic representation of this problem is displayed in Fig. 4.1. Provided

that both σ and Σ fields are statically admissible (see [Bittnar and Šejnoha, 1996]), the

following equations have to be satisfied

∇ · (L0ε+ τ ) = 0 in Ω, (4.6)

τ − (L− L0)ε− λ = 0 in Ω, (4.7)

u′ = 0 on S. (4.8)

A formulation equivalent to Eqs. (4.6) and (4.7) may be obtained by performing a

variation of the extended functional

Uτ =
1

2

∫
Ω

(
ETΣ− (τ − λ)T(L− L0)−1(τ − λ)

−2τTE − ε0Tτ − λTL−1λ
)

dΩ. (4.9)

Setting

δUτ = −1

2

∫
Ω
{2δτT[(L− L0)−1(τ − λ)− ε] + δτTε′ − δε′Tτ}dΩ = 0, (4.10)

we find that Eq. (4.7) is one of the stationarity conditions of Uτ , while the second condition,

Eq. (4.6), follows after recasting the remaining terms in the brackets. Finally, it can be

proved that the stationary value US
τ of the potential Uτ equals the actual potential energy

stored in the anisotropic and heterogeneous body

US
τ =

1

2

∫
Ω

(ε− µ)TL(ε− µ)dΩ, (4.11)
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where µ = −L−1λ is the vector of eigenstrains (stress-free strains). The function Uτ attains

its maximum (δ2Uτ < 0) if (L − L0) is positive definite and its minimum if (L − L0) is

negative definite.

To make use of H-S functional, Eq. (4.9), or its variation, Eq. (4.10), one has to express

ε′ via the polarization tensor τ

ε′(x) = ε(x)−E = [ε∗0τ ] , (4.12)

where the operator [ε∗0τ ] is defined in Appendix A. Subscript 0 is used to identify this

operator with the homogeneous reference medium. Introducing an ensemble average of the

local strain ε in the form

ε(x) = E +
∫

Ω
ε∗0(x− x′)τ (x′) dΩ(x′), (4.13)

allows to rewrite Eq. (4.9) as

Uτ =
1

2

∫
Ω

(
ETΣ− (τ (x)− λ(x))T(L(x)− L0)−1(τ (x)− λ(x))− 2τT(x)ε(x)(4.14)

− τT(x)
∫

Ω
ε∗0(x− x′)

(
τ (x′)− 2τ (x′)

)
dΩ(x)′ − λT(x)L−1(x)λ(x)

)
dΩ(x).

Details are given in Appendix A. If each of the phase r of a randomly arranged composite is

homogeneous with moduli Lr, r = 1, . . . , n, then the material stiffness matrix in the sample

α can be expressed as [Drugan and Willis, 1996],

L(x, α) =
n∑
r=1

Lrχr(x, α). (4.15)

With the help of Eq. (2.11), the ensemble average of L is

L(x) =
n∑
r=1

LrSr(x). (4.16)

Similarly, the trial field for τ and eigenstress λ at any point x located in the sample α are

provided by

τ (x, α) =
n∑
r=1

τ r(x)χr(x, α), λ(x, α) =
n∑
r=1

λr(x)χr(x, α), (4.17)
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with the respective ensemble averages written as

τ (x) =
n∑
r=1

τ r(x)Sr(x), λ(x) =
n∑
r=1

λr(x)Sr(x). (4.18)

To facilitate the solution of the present problem the material is assumed to be ergodic and

statistically homogeneous. Therefore,

L =
n∑
r=1

Lrcr, τ (x) =
n∑
r=1

τ r(x)cr, λ(x) =
n∑
r=1

λr(x)cr. (4.19)

Substituting Eqs. (4.19) into Eq. (4.14) yields the extended averaged form of the Hashin-

Shtrikman principle

Uτ =
1

2

∫
Ω
ETΣ dΩ(x) (4.20)

− 1

2

∑
r

∫
Ω

(
cr(τ r(x)− λr(x))T(Lr − L0)−1(τ r(x)− λr(x))− 2crτ r

T(x)ε(x)
)

dΩ(x)

− 1

2

∑
r

∑
s

∫
Ω
τ r(x)T

∫
Ω
ε∗0(x− x′)

[
Srs(x− x′)τ s(x

′)− 2csτ(x′)
]

dΩ(x′)dΩ(x).

Performing variation with respect to τ r(x) and using Eq. (4.19)2 provides the extended form

of the stationarity conditions

(Lr − L0)−1τ r(x)cr −
n∑
s=1

∫
Ω
ε∗0(x− x′) [Srs(x− x′)− crcs] τ s(x′) dΩ(x′) =

= ε(x)cr + (Lr − L0)−1λr(x)cr, r = 1, . . . , n. (4.21)

Drugan and Willis [Drugan and Willis, 1996] employed the Fourier transforms to solve

Eq. (4.21) for two-phase composites with λr = 0. Including these terms into their approach,

the Fourier transform of polarization stress τ̃ r(ξ) can be found as

τ̃ r(ξ) =
2∑
s=1

T̃rs(ξ)cs
[
ε̃(ξ) + (Ls − L0)−1λ̃s(ξ)

]
, (4.22)

where T̃rs are certain microstructure-dependent tensors. For details the reader is referred

to [Drugan and Willis, 1996]. The Fourier transform of Eq. (4.19)2 is

τ̃ (ξ) =
2∑
r=1

2∑
s=1

crT̃rs(ξ)cs
[
ε̃(ξ) + (Ls − L0)−1λ̃s(ξ)

]
, (4.23)
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Consequently, the inverse Fourier transform of Eq. (4.23) reads

τ (x) =
2∑
r=1

2∑
s=1

∫
Ω
crTrs(x− x′)cs

[
ε(x′) + (Ls − L0)−1λs(x

′)
]

dΩ(x′). (4.24)

Provided that ε(x) and λr(x) do not vary with x, then Eq. (4.24) does not require the

inverse Fourier transform of T̃rs(ξ) to be expressed explicitly, since∫
Ω

Trs(x− x′)dΩ(x′) =
∫

Ω
Trs(x)dΩ(x) = T̃rs(ξ = 0). (4.25)

Hence, according to (4.2) and (4.3) the overall constitutive law takes this form

σ = L̂ε+ λ, (4.26)

where

L̂ = L0 +
2∑
r=1

2∑
s=1

crT̃rs(ξ = 0)cs, (4.27)

λ =
2∑
r=1

2∑
s=1

crT̃rs(ξ = 0)cs(Ls − L0)−1λs. (4.28)

Note that analytical expressions for tensors T̃rs(ξ = 0) is available only for certain con-

figurations such as statistically isotropic composites with linear elastic isotropic phases

[Drugan and Willis, 1996]. In general, numerical solution is required to solve unknown po-

larization stress τ r. This approach is discussed in the following paragraph.

Suppose again that (ε(x) = ε,λr(x) = λr, τ r(x) = τ r) for a general n-phase composite

medium. The system (4.21) then reduces to

(Lr − L0)−1τ rcr −
n∑
s=1

Arsτ s = crε+ (Lr − L0)−1crλr, r = 1, 2, . . . , n, (4.29)

where microstructure-dependent matrices Ars do not depend on x and are provided by

Ars =
∫

Ω
ε∗0(x− x′) [Srs(x− x′)− crcs] dΩ(x′). (4.30)

The solution of system (4.29) can be written in the form (compare with Eq. (4.22))

τ r =
n∑
s=1

Trscs
[
ε+ (Ls − L0)−1λs

]
, (4.31)
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Figure 4.2: Body with prescribed surface tractions including eigenstrains

from which

τ =
n∑
r=1

n∑
s=1

crTrscs
[
ε+ (Ls − L0)−1λs

]
. (4.32)

Solving Eq. (4.29) calls for an efficient method to tackle Eq. (4.30). A suitable method

of attack for obtaining the matrices Ars numerically for a binary representation of real

microstructures is presented in Appendix B.

4.2 Body with prescribed surface tractions and eigenstrains

Recall that the primary variational principal of Hashin and Shtrikman Eq. (4.9), modified to

account for presence of initial stresses, can be used to derive the effective stiffness matrix L̂

and overall eigenstress λ of the composite medium. Similarly, employing its dual counterpart

one may arrive at the effective compliance matrix M̂ and overall eigenstrain µ. In such a

case the boundary value problem discussed in Section 4.1 is modified according to Fig. 4.2.

In particular, suppose that surface tractions p = Σ ·n compatible with uniform stress Σ

are applied along the boundary S of a homogeneous comparison medium (Step I) character-

ized by the compliance matrix M0. The corresponding uniform strain E then follows from

the constitutive law

E = M0Σ in Ω, p0 = p on S. (4.33)
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The local stress σ(x) at point x in Ω of a composite is found by superimposing the solution

of the local problem displayed in Fig. 4.2 Step II. The respective governing equations are

then given by

ε(x) = M(x)σ(x) + µ(x) in Ω, p = p on S. (4.34)

ε(x) = M0σ(x) + γ(x) (4.35)

0 = ε
′

ij,kl + ε
′

kl,ij − ε
′

ik,jl − ε
′

jl,ik in Ω, (4.36)

0 = γ − (M−M0)σ − µ in Ω, (4.37)

p′ = p− p0, p
′ = 0 on S, (4.38)

where µ(x) is the local eigenstrain and γ(x) is called the polarization strain. The compat-

ibility equation (4.36) together with Eq. (4.37) follow from the extended energy functional

given by

Uγ =
1

2

∫
Ω

(
ΣTE − (γ − µ)T(M−M0)−1(γ − µ)

−2γTΣ− σ0Tγ
)

dΩ. (4.39)

Again, performing a variation with respect to unknown quantities γ and σ′ gives

δUγ = −1

2

∫
Ω
{2δγT[(M−M0)−1(γ − µ)− σ] + δγTσ′ − δσ′Tγ}dΩ. (4.40)

Setting δUγ = 0 we immediately recover Eq. (4.37), while the compatibility condition,

Eq. (4.36), follows after recasting the remaining terms in the brackets. As for the primary

variational principle, it can be proved that the stationary value US
γ of the potential Uγ

equals the actual potential energy stored in the anisotropic and heterogeneous body

US
γ =

1

2

∫
Ω

(σTMσ + 2σTµ)dΩ. (4.41)

The function Uγ attains its maximum (δ2Uτ < 0) if (M −M0) is positive definite and its

minimum if (M−M0) is negative definite.

To reduce the number of unknown quantities we first write σ′ in terms of the polarization

strain γ in the form

σ′(x) = σ(x)−Σ = [σ∗0γ] . (4.42)
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The operator [σ∗0γ] can be identified with the operator [ε∗0τ ] when replacing γ for τ and

σ∗0 for ε∗0 in Eq. (A.1) and suitably modifying the boundary term to reflect the traction

boundary conditions. As for properties of tensor σ∗0 the reader is referred to Appendix C,

Eq. (C.22). Again, subscript 0 stands for the homogeneous reference medium.

Next, taking into account Eq. (4.35) we introduce, in analogy with the primary principle,

an ensemble average of the local stress σ in the form

σ(x) = Σ +
∫

Ω
σ∗0(x− x′)γ(x′) dΩ(x′)−M−1

0 γ(x), (4.43)

to rewrite Eq. (4.39) as

Uγ =
1

2

∫
Ω

(
ΣTE − (γ(x)− µ(x))T(M(x)−M0)−1(γ(x)− µ(x))− 2γT(x)σ(x)

− γT(x)
∫

Ω
σ∗0(x− x′)

(
γ(x′)− 2γ(x′)

)
dx′

+ γT(x)M−1
0

(
γ(x)− 2γ(x)

))
dΩ(x) (4.44)

Assuming that each phase r of a randomly arranged composite is homogeneous with the

compliance matrix Mr, r = 1, . . . , n, we write in analogy with the Section 4.1 the material

stiffness matrix, the polarization strain γ and eigenstrain µ in the sample α as

M(x, α) =
n∑
r=1

Mrχr(x, α),

γ(x, α) =
n∑
r=1

γr(x)χr(x, α), µ(x, α) =
n∑
r=1

µr(x)χr(x, α), (4.45)

with the respective ensemble averages given

M(x) =
n∑
r=1

MrSr(x), γ(x) =
n∑
r=1

γr(x)Sr(x), µ(x) =
n∑
r=1

µr(x)Sr(x). (4.46)

Suppose the material is again ergodic and statistically homogeneous. Then individual terms

in Eq. (4.46) simplify such that

M =
n∑
r=1

Mrcr, γ(x) =
n∑
r=1

γr(x)cr, µ(x) =
n∑
r=1

µr(x)cr. (4.47)

Substituting Eqs. (4.47) into Eq. (4.44) readily provides the extended averaged form of the

dual Hashin-Shtrikman principle
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Uγ =
1

2

∫
Ω

ΣTE dΩ(x)− (4.48)

1

2

∑
r

∫
Ω

(
cr(γr(x)− µr(x))T(Mr −M0)−1(γr(x)− µr(x))− 2crγr

T(x)σ(x)
)

dΩ(x)

− 1

2

∑
r

∑
s

∫
Ω
γr(x)T

∫
Ω
σ∗0(x− x′)

[
Srs(x− x′)γs(x

′)− 2csγ(x′)
]

dΩ(x′)dΩ(x)

+
1

2

∑
r

∑
s

∫
Ω

M−1
0

(
δrscrcsγs(x)− 2csγs(x)

)
dΩ(x).

Performing a variation with respect to γr(x) and using Eq. (4.46)2 provides the extended

form of the stationarity conditions

(Mr −M0)−1γr(x)cr −
n∑
s=1

(∫
Ω
σ∗0(x− x′) [Srs(x− x′)− crcs]γs(x′) dΩ(x′)

− M−1
0 (δrscrcs − cscr)

)
= σ(x)cr + (Mr −M0)−1µr(x)cr. (4.49)

To derive the macroscopic constitutive equation we follow the procedure outlined in the

previous section. To that end, we first write the Fourier transform of polarization strain

γ̃r(ξ) in the form

γ̃r(ξ) =
2∑
s=1

R̃rs(ξ)cs
[
σ̃(ξ) + (Ms −M0)−1µ̃s(ξ)

]
, (4.50)

where tensors R̃rs must be again obtained for the specific microstructure. Thus the Fourier

transform of Eq. (4.46)2 is given by

γ̃(ξ) =
2∑
r=1

2∑
s=1

crR̃rs(ξ)cs
[
σ̃(ξ) + (Ms −M0)−1µ̃s(ξ)

]
, (4.51)

and finally, the inverse Fourier transform of Eq. (4.51) gives

γ(x) =
2∑
r=1

2∑
s=1

∫
Ω
crRrs(x− x′)cs

[
σ(x′) + (Ms −M0)−1µs(x

′)
]

dx′. (4.52)

In analogy with Section 4.1 we limit our attention to constant ensemble average σ and

piecewise uniform distribution of eigenstrain µe to get∫
Ω

Rrs(x− x′)dΩ(x′) =
∫

Ω
Rrs(x)dΩ(x) = R̃rs(ξ = 0). (4.53)
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Ensemble average of Eq. (4.35) then leads to the desired macroscopic constitutive law

ε = M̂σ + µ, (4.54)

with

M̂ = M0 +
2∑
r=1

2∑
s=1

crR̃rs(ξ = 0)cs, (4.55)

µ =
2∑
r=1

2∑
s=1

crR̃rs(ξ = 0)cs(Ms −M0)−1µs. (4.56)

For a general n-phase composite medium the system (4.49) assumes the following form

(Mr −M0)−1γrcr −
n∑
s=1

Brsγs = crσ + (Mr −M0)−1crµr, r = 1, 2, . . . , n, (4.57)

where microstructure-dependent matrices Brs are provided by

Brs =
∫

Ω
σ∗0(x− x′) [Srs(x− x′)− crcs] dΩ(x′). (4.58)

In analogy with Eqs. (4.32), the solution of system (4.57) is found in the form

γr =
n∑
s=1

Rrscs
[
σ + (Ms −M0)−1µs

]
, (4.59)

so that

γ =
n∑
r=1

n∑
s=1

crRrscs
[
σ + (Ms −M0)−1µs

]
. (4.60)

Evaluation of microstructure-dependent tensors Brs is outlined in Appendix B.

4.3 Numerical example

To make comparisons with the finite element approach we consider afresh the graphite fiber

tow of Fig. 2.3. The primary goal is to recover the effective thermo-elastic properties already

derived in Chapter 3.

Starting from the primary H-S variational principle, Section 4.1, the thermo-elastic

macroscopic constitutive law receives the form

σ = L̂ (ε−m∆θ) , (4.61)
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where m is the overall thermal strain vector of the expansion coefficients. To fill individual

entries in L̂ and m requires first to solve Eq. (4.28) for unknown components of vectors τ r.

To comply with the generalized plane strain conditions it is necessary to augment the 3× 3

matrix Ars into 4× 4 matrix by zeros into the fourth column and row.

Eqs. (4.2) and (4.3) then readily provide the ensemble average σ as

σ =
2∑
r=1

cr
{
Lr (Lr − L0)−1 τ r + Lr

[
(Lr − L0)−1 − I

]
mr∆θ

}
. (4.62)

Referring to Section 3.2.2 the coefficients of the stiffness matrix L̂ are found from solutions

of four successive elasticity problems. In each solution the medium, free of thermal strains,

is subjected to overall strain ε with only one nonzero component of unit magnitude. The

overall stress, resulting from Eq. (4.62), then furnishes the column of the (4×4) matrix L̂

corresponding to the selected nonzero component of ε as a function of L0. Therefore, having

properly chosen components of the stiffness matrix of the comparison medium L0 we may

arrive either at the lower or upper bound on elastic stiffnesses of heterogeneous media. In

particular, we select L0 as an artificial material with coefficients L0
ij

<

>
Lrij smallest (largest)

of all Lrij in Ω.

Results appear in Table 4.1. Material properties of individual phases are taken from

Table 3.10. The FFT combined with the Gaussian quadrature is used to evaluate the mi-

crostructure dependent matrices Ars (recall Section 2.3.1 and Appendix B).

The thermal strain coefficients are obtained in the similar way by setting ε = 0 and

applying the temperature change ∆θ equal to unity. The stress from Eq. (4.62) is the overall

eigenstress λ. The overall thermal strain m then follows from

m = −M̂λ, (4.63)

where M̂ = L̂−1. Results are summarized in Table 4.2.

Clearly the finite element solutions from Chapter 3, except for the lowest resolution of

the digitized medium which essentially overestimates the fiber volume fraction, falls within



99

Table 4.1: Effective elastic stiffnesses [GPa]

Bitmap L11 L22 L33

resolution LB FEM UB LB FEM UB LB FEM UB

122 × 84 10.733 10.762 10.770 10.713 10.725 10.746 2.211 2.215 2.218

244 × 179 10.740 10.762 10.777 10.720 10.725 10.752 2.209 2.215 2.216

488 × 358 10.730 10.762 10.763 10.721 10.725 10.754 2.209 2.215 2.216

976 × 716 10.730 10.762 10.763 10.721 10.725 10.764 2.209 2.215 2.216

Table 4.2: Effective coefficients of thermal expansion [K−1]

Bitmap αx × 105 αy × 105 αz × 107 cf

resolution LB FEM UB LB FEM UB LB FEM UB

122 × 84 2.248 2.269 2.278 2.230 2.248 2.253 -7.488 -7.463 -7.504 0.438

244 × 179 2.256 2.269 2.285 2.236 2.248 2.259 -7.455 -7.463 -7.471 0.436

488 × 358 2.256 2.269 2.287 2.237 2.248 2.260 -7.455 -7.463 -7.471 0.436

976 × 716 2.256 2.269 2.287 2.237 2.248 2.260 -7.455 -7.463 -7.471 0.436

individual bounds. Tables 4.1 and 4.2 further demonstrate insensivity of the solution to

the selected bitmap resolution, as long as the volume fraction of the inclusion is the same

(see Section 2.4.3). In addition, attributed to the assumed statistical homogeneity the results

confirm a slight anisotropy of the present medium suggested by the results from the previous

chapter. Efficiency of the present approach when compared to the FEM analysis is doubt-

less. Nevertheless, to fully accept this method a number of other numerical experiments,

particularly when loading the material beyond the elastic limit, are needed.



Chapter 5

CONCLUSIONS

Effective thermoelastic and viscoelastic properties are found for a fibrous graphite-epoxy

composite system with fibers randomly distributed within a transverse plane section of the

composite aggregate. Two reliable and efficient approaches are introduced in the present

work. Although different at their theoretical formulation both approaches are closely tight

to the same statistical descriptors generally used to quantify random microstructures.

The first approach follows well established procedures which incorporate various periodic

unit cell models combined with the finite element method. The complexity of real microstruc-

tures is reflected here in more complicated unit cells having larger number of particles. The

required number particles and their arrangement is determined such that the macroscopic

response of a unit cell is identical to the behavior of a real composite. A simple and intuitive

approach based on microstructural statistics is proposed to derive such periodic unit cells.

The stepping stone in the present approach is the knowledge of either the two-point proba-

bility function or the second order intensity function. Details regarding these functions are

given in Chapter 2 together with methods for their determination. In addition, this chapter

describes a series of tests confirming the validity of statistical isotropy and ergodicity as-

sumptions suggested for the present composite system (graphite fiber tow impregnated by

the polymer matrix). Chapter 3 then outlines generation of optimal unit cells by matching

the material statistics of both the unit cell and real material up to two-point level. An

optimization problem arising in informulation is then solved with the help of genetic algo-

rithms. The present work promotes the Augmented Simulated Annealing method as the

most suitable one in achieving this goal. Finally, an applicability of the present approach is

confirmed by evaluating effective thermoelastic properties of the selected composite system
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from both the small period unit cells (five to ten fibers unit cells) and considerably larger

unit cells having of two orders of magnitude more particles (three to five hundred fibers). An

excellent match is found. These results are rather encouraging particularly when applying

the small unit cells to study an inelastic response of random composites. This approach is

under current investigation.

An alternative procedure discussed in Chapter 4 is closely related to well known effective

medium theories. Here, the most widely used variational principles of Hashin and Shtrik-

man are reviewed. Both the displacement and traction based formulations are revisited in

conjunction with random composites and extended to account for the presents of initial

stresses or strains. A very efficient numerical procedure based on the DFT which directly

exploits digitized images of real microstructures is implemented. Fourier transform approach

applied when solving the resulting integral equations is rather advantageous as it allows an

arbitrary choice of the reference medium so that often encountered anisotropy of individual

phases creates no obstacles in the solution procedure. When compared to unit cell approach

this method is more efficient and thus preferable when evaluating the macroscopic elastic

response of real composites. Not the same might be true when inelastic deformations are

decisive. But this has yet to be confirmed.
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Appendix A

PROPERTIES OF THE OPERATOR [ε∗0τ ]

Derivation of the operator [ε∗0τ ] calls for the solution of the boundary value problem

displayed in Fig. A.1(a). Suppose that a three-dimensional homogeneous and isotropic body

Ω with the boundary S is loaded by polarization stress τ (x),x ∈ Ω, and surface displacements

u′(x),x ∈ S . The constitutive law together with assumed boundary conditions are shown

in Fig. A.1(a).

Before proceeding with the solution of the present problem it is convenient to introduce

an auxiliary problem described in Fig. A.1(b). In particular, consider an unbounded domain

Ω∞ with boundary S∞. It is assumed that this new region is in an equilibrium state under

application of a certain body force b∗ discussed below.

u = 0

σij

σij ε ij τ ij

σij,j = 0

∋Ωx      

σij* ε ij* bi* =δei

σij,j* bi*

∋Ωx      

σij* *εklτ ij+εkl

L 0

Ω
2

3x

x

x1 

8

L 0 τ

Ω
2

3x

x

x1 

S S

8

Bounded domain Unbounded domain

(a) (b)

= L0

+ = 0

8

= L0
ijklijkl

Figure A.1: Boundary value problem to derive the operator [ε∗0τ ]
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If elastic properties remain the same in both cases, the solution of the original problem

can now be inferred from application of Betti’s theorem

∫
Ω

(σ′ij − τij)ε∗ij dΩ =
∫

Ω
ε′ijσ

∗
ij dΩ. (A.1)

Integrating by parts both sides of Eq. (A.1) yields

−
∫

Ω
σ′ij,ju

∗
i dΩ +

∫
S
σ′ijnju

∗
i dS −

∫
Ω
τij ε
∗
ij dΩ = −

∫
Ω
σ∗ij ,j u

′
i dΩ +

∫
S
σ∗ij nj u

′
i dS . (A.2)

Note that f,i = ∂f
∂xi

. The first term on the left-hand side and the last term on the right-hand

side disappear due to equilibrium and boundary conditions, see Fig. A.1(a). In addition, the

equilibrium condition for unbounded domain, Fig. A.1(b), can be used in Eq. (A.2) to get

∫
S
L0
ijklε

′
klnju

∗
i dS +

∫
Ω
τij ,j u

∗
i dΩ =

∫
Ω

b∗i u ′i dΩ . (A.3)

Notice that the divergence theorem was applied to the last term on the left-hand side to

eliminate the polarization stress τ from the boundary integral. It now becomes advantageous

to modify Eq. (A.3) by subtracting a “zero” term

∫
Ω
τ ij,ju

∗
i dΩ,

from the last term on the left hand side, where τ is a constant polarization stress tensor. It

is worthwhile to mention that this transformation is valid also in the case when τ = τ (x)

does vary, but τ ij,j � τij,j. After integrating by parts the modified term we finally get

∫
Ω
b∗iu
′
i dΩ =

∫
S

(
L0
ijklε

′
kl + τij − τ ij

)
nju

∗
i dS −

∫
Ω

(τij − τ ij )ε
∗
ij dΩ . (A.4)

If τ ij is taken as the mean value of τij(x), then integrals involving τij(x) − τ ij oscillate

about zero and similarly in virtue of St. Venant’s principle will do the term L0
ijklε

′
kl. Hence

the integral over S is insignificant except for points x′ in a “boundary layer” close to S

[Willis, 1977].

Eq. (A.4) can be further modified when associating individual components of the body

force b∗ with positive unit point loads applied at a point x′ ∈ Ω∞ in the directions of the
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coordinate axes x1, x2, x3. To this end, denote

b∗i = δpiδ(x− x′)ep, (A.5)

where δ is the Dirac delta function, which has a zero value at all points x 6= x′ except for the

point x = x′ where it tends to infinity. Recall the following property of the Dirac function∫
Ω
u′p(x)δ(x− x′) dΩ(x) = u′p(x

′). (A.6)

Further introduce the corresponding displacement field u∗pi = u∗pi(x− x′)

u∗i = u∗pi(x− x′)ep

ε∗ij = ε∗pij(x− x′)ep. (A.7)

Tensor u∗pi is the so-called fundamental solution that satisfies the Lamé equation

L0
ijklu

∗
pk,lj(x− x′) + δpiδ(x− x′) = 0. (A.8)

It represents the displacements in the i direction at point x due to a unit point force applied

at point x′ in the direction p. Similarly, tensor ε∗pij given by

ε∗pij =
1

2
(u∗pi,j + u∗pj,i), (A.9)

then corresponds to the strains at point x due to a unit point force applied at point x′ in

the pth direction. Substituting Eqs. (A.5)-(A.7) into Eq. (A.4) gives

u′p(x
′) =

∫
S

(
L0
ijklu

′
k,l(x) + τij(x)− τ ij(x)

)
nju

∗
pi(x− x′) dS (x)

−
∫

Ω
(τij(x)− τ ij(x)) ε∗pij(x− x′) dΩ(x). (A.10)

Finally, differentiating the above equation with respect to x′ provides the operator [ε∗0(τ−τ )]

in the form

ε′pq(x
′) = −

∫
S

(
L0
ijklu

′
k,l(x) + τij(x)− τ ij(x)

)
njε
∗
ipq(x− x′) dS (x)

+
∫

Ω
(τij(x)− τ ij(x)) ε∗ijpq(x− x′) dΩ(x)

= [ε∗0(τ − τ )] , (A.11)
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in which the singularity at x = x′ is interpreted in the sense of distributions. The values

of L0
ijklu

′
k,lnj on S follow from the solution of integral equation (A.10) subjected to u′ = 0

on S. These values, however, are not needed explicitly if neglecting the contribution due to

boundary integral. Recall discussion above. The local strain thus follows from superposition

of oscillating part of strain ε′ and the uniform strain E (recall Section 4.1, Fig. 4.1)

εpq(x
′) = ε′pq + Epq = Epq +

∫
Ω

(τij(x)− τ ij(x)) ε∗ijpq(x− x′) dΩ(x), (A.12)

with ε′ now given by

ε′pq(x
′) =

∫
Ω
ε∗ijpq(x− x′) (τij(x)− τ ij(x)) dΩ(x). (A.13)

To conclude, recall the term τTε′ which appears in Eq. (4.9). Hence

τTε′ = τT
∫
ω
ε∗0(x− x′) (τ (x)− τ (x)) dΩ(x). (A.14)

Finally, ensemble averaging yields

τTε′ =
∑
r

∑
s

τ r
T(x′)

∫
Ω
ε∗0(x− x′) [Srs(x− x′)− crcs] τ s(x) dΩ(x) (A.15)

Compare with Eqs. (4.20) and (4.21).



Appendix B

EVALUATION OF MICROSTRUCTURE-DEPENDENT

QUANTITIES

B.1 Evaluation of M(r) for impenetrable cylinders

The function M(r) appears in the relation for the two-point matrix probability function of

particulate media (see Eq.(2.36)). For the statistically isotropic media, it takes the form

M(r12) =
∫ ∫

h(r34)m(r13)m(r24)dr3dr4. (B.1)

An elegant approach based on the Fourier transform is available to evaluate the above inte-

gral. Starting from Eq. (C.1) the Fourier transform of function h(x) is given by

h̃(ξ) =
∫
h(x)eiξ·xdx. (B.2)

Writing Eq. (B.2) in polar coordinates gives

h̃(ξ, θ) =
∫ ∞

0

∫ 2π

0
h(r)eirξ(cos θ cosφ+sin θ sinφ)r drdφ =

=
∫ ∞

0

∫ 2π

0
h(r)eirξ(cos(θ−φ))r drdφ =

=
∫ ∞

0
h(r) r

(∫ 2π

0
eirξ cosαdα

)
dr (B.3)

Note that the bracketed term can be written as [Rektorys, 1995b, p. 663]∫ 2π

0
eirξ cosαdα = 2πJ0(rξ), (B.4)

where J0 is the Bessel function of the first kind and 0-th order. Eq. (B.3) then attains the

following form

h̃(ξ) = 2π
∫ ∞

0
h(r)J0(rξ) r dr . (B.5)
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It now becomes advantageous to replace h(r) with function K(r) using Eqs. (2.31) and

(2.32). Hence

h̃(ξ) = 2π
∫ ∞

0
h(r)rJ0(rξ)dr = 2π

∫ ∞
0

1

2πr

dK̂(r)

dr
rJ0(rξ)dr =

=
∫ ∞

0

dK̂(r)

dr
J0(rξ)dr = ξ

∫ ∞
0

K̂(r)J1(rξ)dr +
[
J0(rξ)K̂(r)

]∞
0

(B.6)

where K̂(r) = K(r)− πr2 and J1 is the Bessel function of the first kind and first order. The

last term in Eq. (B.6) vanishes, since K̂(0) = 0 and for r →∞ J0(rξ)→ 0 and K̂(r)→ const.

The quantity m̃(ξ) is provided by

m̃(ξ) = 2π
∫ ∞

0
H(R− r)J0(rξ) r dr = 2π

∫ R

0
J0(rξ) r dr. (B.7)

Note that (see [Rektorys, 1995b, p. 664])

d

dr
(rJ1(r)) = J1(r) + r

dJ1(r)

dr
= J1(r) + (−J1(r) + rJ0(r)) = rJ0(r),

so that integral (B.7) yields

m̃(ξ) =

[
2πr

ξ
J1(rξ)

]R
0

=
2πR

ξ
J1(Rξ) (B.8)

Using similar procedure and employing relation (B.5), the inverse transform of function

M̃(ξ) can be obtained as

M(r) =
1

2π

∫ ∞
0

M̃(ξ)ξJ0(rξ)dξ. (B.9)

B.2 Evaluation of matrices Ars and Brs

Consider Eq. (4.30) to write the microstructure-dependent matrices Ars in the form

Ars =
∫

Ω
ε∗0(x− x′) [Srs(x− x′)− crcs] dΩ(x′)

=
∫

Ω
ε∗0(x− x′)S ′rs(x− x′) dΩ(x′) =

∫
Ω
ε∗0(x)S ′rs(x) dΩ(x), (B.10)



116

where S ′rs denotes the fluctuating part of Srs under the no-long range orders hypothesis.

Next, using Eq. (C.1) observe that the preceding formula can be written as

Ars =
∫

Ω
ε∗0(x)S ′rs(x) dΩ(x)

=
[∫

Ω
ε∗0(x)S ′rs(x)eix·ξ dΩ(x)

]
ξ=0

= F [ε∗0(x)S ′rs(x)]ξ=0 . (B.11)

Then, recall Eq. (C.10) to get

Ars =
1

(2π)d

[∫
Ω
ε̃∗0(ξ − ξ0)S̃ ′rs(ξ0)dξ0

]
ξ=0

=
1

(2π)d

∫
Ω
ε̃∗0(−ξ0)S̃ ′rs(ξ0)dξ0 (B.12)

Since ε̃∗0(−ξ) = ε̃∗0(ξ) we finally arrive at

Ars =
1

(2π)d

∫
Ω
ε̃∗0(ξ0)S̃ ′rs(ξ

0)dξ0 (B.13)

Similar procedure then provides

Brs =
1

(2π)d

∫
Ω
σ̃∗0(ξ0)S̃ ′rs(ξ

0)dξ0 (B.14)

Note that Fourier’s transform ε̃∗0 or σ̃0
∗ can be obtained for any homogeneous anisotropic

reference media (see Appendix C, Section C.4), which is not generally possible for function

ε∗0 itself. Therefore, once we are able to compute the values of S̃ ′rs we may evaluate inte-

grals (B.13) and (B.14) by appropriate numerical procedure such as the familiar Gaussian

quadrature.



Appendix C

THE FOURIER TRANSFORM

C.1 The Fourier transform

The d-dimensional Fourier transform of function f(x) is provided by

F [f(x)] = f̃(ξ) =
∫

Ω
f(x)eiξ·xdx, (C.1)

where i is the imaginary unit. The operator F is called the Fourier transform operator. The

inverse operator F−1 is obtained by changing the sign of i and dividing by (2π)d. Hence, the

inverse Fourier transform is given by

F−1
[
f̃(ξ)

]
= f(x) = (2π)−d

∫
Ω
f(ξ)e−iξ·xdξ. (C.2)

Simple algebra shows that the operator F satisfies the following equation

F−1 [F [f(x)]] = f(x). (C.3)

Provided that function f(x) decays “sufficiently rapidly” to 0 for |x| → ∞ we have

˜( ∂f
∂xi

)
(ξ) =

∫
Ω

∂f

∂xi
eiξ·xdx = −iξi

∫
Ω
f(x)eiξ·xdx = −iξif̃(ξ). (C.4)

C.2 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) often replaces its continuous counterpart when an-

alyzing discrete systems such as digitized images of real microstructures. The complexity

of their geometries usually calls for sampling of large micrographs, recall Fig. 2.3. The ac-

tual microstructure is then approximated by the measured segment periodically extended
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outside the measured region. Such a representation invites an application of the DFT to

carry out Fourier analysis if needed. Clearly, the discrete Fourier representation results in

periodic representation in real space. Note that the spectrum of the discrete real space is

also periodic.

Without loss of generality we now limit our attention to a one-dimensional problem and

consider a discrete set of N points defined on the interval 0 ≤ n ≤ N − 1. Applying a

discrete version of the Fourier series this set is given by

x(n) =
1

N

N−1∑
k=0

ξ(k)ei(2π/N)kn, (C.5)

where the coefficients ξ(k) are provided by the Discrete Fourier Transform of x(n)

ξ(k) =
1

N

N−1∑
n=0

x(n)e−i(2π/N)kn. (C.6)

Extension to cover 2D and 3D problems is rather straightforward. Further discussion on this

subject can be found in very readable form in [Burrus and Parks, 1985].

C.3 The convolution theorem

The convolution of two functions f and g is defined as∫
Ω
f(x− x′)g(x′)dx′.

The convolution theorem states that the transform of the convolution equals the product of

the transforms

F
[∫

Ω
f(x− x′)g(x′)dx′

]
= F [f(x)]F [g(x)] . (C.7)

The prove is remarkably simple (see [Sokolnikoff and Redheffer, 1958] for further discussion).

We have

F
[∫

Ω
f(x− x′)g(x′)dx′

]
=

∫
Ω

[∫
Ω
f(x− x′)g(x′)dx′

]
eiξ·xdx

=
∫

Ω
g(x′)

[∫
Ω
f(x− x′)eiξ·xdx

]
dx′

= F [f(x)]
∫
g(x′)eiξ·x′dx′ = F [f ]F [g] (C.8)
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Similarly, using Eq. (C.2) gives

F−1
[∫

Ω
f̃(ξ − ξ0)g̃(ξ0)dξ′

]
= (2π)df(x)g(x), (C.9)

which implies that

F [f(x)g(x)] = (2π)−d
∫

Ω
f̃(ξ − ξ0)g̃(ξ0)dξ0. (C.10)

Finally, the Fourier transform of the integral∫
Ω
f(x + x′)g(x′)dx′,

where g(x) is a real function, is given by ([Press et al., 1992] Chapter 12)

F
[∫

Ω
f(x + x′)g(x′)dx′

]
= F [f(x)]F [g(x)], (C.11)

where · means complex conjugate and should not be mistaken with the ensemble average

used before.

C.4 Fourier transform of the Dirac delta function

General properties of the Dirac delta function are discussed in Appendix A. In particular,

Eq. (A.6) can be used to infer ∫
Ω
δ(x)eiξ·xdx = 1, (C.12)

where 1 represents the identity matrix. Hence, the inverse relation gives

1

(2π)d

∫
Ω

1 · e−iξ·xdξ = δ(x). (C.13)

C.5 The Fourier transform of tensors ε∗ijkl and σ∗ijkl

In Chapter 4 we introduced the forth order tensors ε∗ijkl and σ∗ijkl related to the fundamental

solution u∗ij. Specific forms of these tensors for a homogeneous and isotropic material can

be found e.g. in [Bittnar and Šejnoha, 1996]. Their Fourier transforms, however, needed for

evaluations of matrices Ars and Brs in Eqs. (4.30) and (4.58) deserve more attention.
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First, consider the tensor ε∗ijkl. When differentiating Eq. (A.10) it becomes clear that

ε∗ijkl(x) =
1

2

(
ε∗ikl,j(x) + ε∗jkl,i(x)

)
. (C.14)

Then, introducing Eq. (A.9) into Eq. (C.14) yields

ε∗ijkl(x) =
1

4

(
u∗ik,lj(x) + u∗il,kj(x) + u∗jk,li(x) + u∗jl,ki(x)

)
. (C.15)

Hence, according to definition the Fourier transform of Eq. (C.15) can be written in the form

ε̃∗ijkl(ξ) = −1

4

(
ũ∗ik(ξ)ξlξj + ũ∗il(ξ)ξkξj + ũ∗jk(ξ)ξlξi + ũ∗jl(ξ)ξkξi

)
. (C.16)

Similarly, the Fourier transform of Eq. (A.8) reads

− L0
ijklξiξlũ

∗
jm(ξ) + δkm = 0, (C.17)

so that

ũ∗jk(ξ) =
(
L0
ijklξiξl

)−1
. (C.18)

For a homogeneous and isotropic material the above equation assumes the form

ũ∗jk(ξ) =
1

|ξ|2µ
δjk −

λ+ µ

µ(λ+ 2µ)

ξj
|ξ|2

ξk
|ξ|2

, (C.19)

where λ and µ are Lamé parameters. Finally, substituting Eq (C.19) into Eq (C.16) gives

the Fourier transform of the tensor ε∗ijkl

ε̃∗ijkl = − 1

|ξ|4µ

{
|ξ|2

4
(ξjξlδik + ξiξlδjk + ξjξkδil + ξiξkδjl)−

λ+ µ

µ(λ+ 2µ)
ξiξjξkξl

}
. (C.20)

To derive the Fourier transform of the tensor σ∗ijkl we begin with the constitutive law for

isotropic material given by

σij(x) = λul,l(x)δij + µ(ui,j(x) + uj,i(x)). (C.21)

The above equation can be used to show that

σ∗ijkl(x) = λσ∗mkl,mδij + µ(σ∗ikl,j + σ∗jkl,i), (C.22)
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where

σ∗ijk(x) = λu∗il,l(x)δjk + µ(u∗ij,k(x) + u∗ik,j(x)). (C.23)

Fourier transforming of Eq. (C.22) then provides

σ̃∗ijkl(ξ) = −iλσ̃∗mkl(ξ)ξmδij − iµ(σ̃∗ikl(ξ)ξj + σ̃∗jkl(ξ)ξi), (C.24)

where the Fourier transform of σ∗ijk is given by

σ̃∗ijk(ξ) = −iλũ∗il(ξ)ξlδjk − iµ(ũ∗ij(ξ)ξk + ũ∗ik(ξ)ξj). (C.25)

Therefore, after substituting the above equation into Eq. (C.24) we arrive at

σ̃∗ijkl(ξ) = −λ2ũ∗mn(ξ)ξmξnδijδkl

−λµ
(
ũ∗mk(ξ)ξlξmδij + ũ∗ml(ξ)ξkξmδij + ũ∗in(ξ)ξnξjδkl + ũ∗jn(ξ)ξnξiδkl

)
−µ2

(
ũ∗ik(ξ)ξlξj + ũ∗il(ξ)ξkξj + ũ∗jk(ξ)ξlξi + ũ∗jl(ξ)ξkξi

)
. (C.26)

The last step requires substitution of Eq. (C.19) into Eq. (C.26). After some lengthy algebra

we finally get the desired results in the form

σ̃∗ijkl = − λµ

|ξ|2(λ+ 2µ)

{
λ

µ
|ξ|2δijδkl − 4

λ+ µ

|ξ|2λ
ξiξjξkξl + 2 (ξiξjδkl + ξkξlδij)

+
λ+ 2µ

λ
(ξjξlδik + ξjξkδil + ξiξlδjk + ξiξkδjl)

}
(C.27)

For a general anisotropic solid one may start from Eq. (C.16) and write the tensor σ̃∗ijkl as

σ̃∗ijkl = L0
ijrsε̃

∗
rsmnL

0
mnkl. (C.28)
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